【题目】如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=BC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是_____.
【答案】①②④⑤
【解析】
连接AD,根据三角形中位线定理得到OD∥AC,①正确;根据圆周角定理得到∠ADB=90°=∠ADC,根据等腰三角形的性质得到∠B=∠C,②正确;根据切线的判定定理得到DE是⊙O的切线,④正确;根据余角的性质得到∠EDA=∠ODB,根据等腰三角形的性质得到∠B=∠ODB,求得∠EDA=∠B,⑤正确;根据线段垂直平分线的性质得到AC=AB,求得OA=AC,③不正确
解:连接AD,
∵D为BC中点,点O为AB的中点,
∴OD为△ABC的中位线,
∴OD∥AC,①正确;
∵AB是⊙O的直径,
∴∠ADB=90°=∠ADC,
即AD⊥BC,又BD=CD,
∴AC=BC,
∴△ABC为等腰三角形,
∴∠B=∠C,②正确;
∵DE⊥AC,且DO∥AC,
∴OD⊥DE,
∵OD是半径,
∴DE是⊙O的切线,∴④正确;
∴∠ODA+∠EDA=90°,
∵∠ADB=∠ADO+∠ODB=90°,
∴∠EDA=∠ODB,
∵OD=OB,
∴∠B=∠ODB,
∴∠EDA=∠B,∴⑤正确;
∵D为BC中点,AD⊥BC,
∴AC=AB,
∵OA=OB=AB,
∴OA=AC,
∴2OA=AC,
∴③不正确,
故答案为:①②④⑤.
科目:初中数学 来源: 题型:
【题目】某同学所在年级的500名学生参加志愿者活动,现有以下5个志愿服务项目:A,纪念馆志讲解员.B.书香社区图书整理C.学编中国结及义卖.D,家风讲解员E.校内志愿服务,要求:每位学生都从中选择一个项目参加,为了了解同学们选择这个5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:
收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示)
B,E,B,A,E,C,C,C,B,B,
A,C,E,D,B,A,B,E,C,A,
D,D,B,B,C,C,A,E,B
C,B,D,C,A,C,C,A,C,E,
(1)整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图
选择各志愿服务项目的人数统计表
志愿服务项目 | 划记 | 人数 |
A.纪念馆志愿讲解员 | 正 | 8 |
B.书香社区图书整理 | ||
C.学编中国结及义卖 | 正正 | 12 |
D.家风讲解员 | ||
E.校内志愿服务 | 正 一 | 6 |
合计 | 40 | 40 |
分析数据、推断结论
(2)抽样的40个样本数据(志愿服务项目的编号)的众数是 (填A﹣E的字母代号)
(3)请你任选A﹣E中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,的直径,点是延长线上的一点,过点作的切线,切点为,连接.
(1)若,求的长;
(2)若点在的延长线上运动,的平分线交于点,你认为的大小是否发生变化?若变化,请说明理由;若不变化,求出的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,为射线上一定点,点关于射线的对称点为点为射线上一动点,连接,满足为钝角,以点为中心,将线段逆时针旋转至线段,满足点在射线的反向延长线上.
(1)依题意补全图形;
(2)当点在运动过程中,旋转角是否发生变化?若不变化,请求出的值,若变化,请说明理由;
(3)从点向射线作垂线,与射线的反向延长线交于点,探究线段和的数量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为调查某市市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“:自行车,:家庭汽车,:公交车,:电动车,:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.
(1)本次调查中,一共调查了 名市民;扇形统计图中,项对应的扇形圆心角是_____ ;
(2)补全条形统计图;
(3)若甲上班时从三种交通工具中随机选择一种, 乙上班时从三种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人都不选种交通工具上班的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作)如图①,在矩形中,为对角线上一点(不与点重合),将沿射线方向平移到的位置,的对应点为.已知(不需要证明).
(探究)过图①中的点作交延长线于点,连接,其它条件不变,如图②.求证:.
(拓展)将图②中的沿翻折得到,连接,其它条件不变,如图③.当最短时,若,,直接写出的长和此时四边形的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形中,,,点在边上,与点、不重合,过点作的垂线与的延长线相交于点,连结,交于点.
(1)当为的中点时,求的长;
(2)当是以为腰的等腰三角形时,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com