【题目】已知二次函数.
(1)写出该二次函数图象的对称轴及顶点坐标,再描点画图;
(2)利用图象回答:当x取什么值时,.
科目:初中数学 来源: 题型:
【题目】如图,ABCD的对角线AC,BD相交于点O,EF经过点O,分别交AB,CD于点E,F,FE的延长线交CB的延长线于点M.
(1)求证:OE=OF;
(2)若AD=4,AB=6,BM=1,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学利用数学知识测量建筑物DEFG的高度.他从点出发沿着坡度为的斜坡AB步行26米到达点B处,用测角仪测得建筑物顶端的仰角为37°,建筑物底端的俯角为30°,若AF为水平的地面,侧角仪竖直放置,其高度BC=1.6米,则此建筑物的高度DE约为(精确到米,参考数据:,)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON及其边上一点A,以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C,再以点C为圆心,AC长为半径画弧,恰好经过点B,错误的结论是( ).
A.B.∠OCB=90°C.∠MON=30°D.OC=2BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7min同时到达C点,甲机器人前3分钟以a m/min的速度行走,乙机器人始终以60m/min的速度行走,如图是甲、乙两机器人之间的距离y(m)与他们的行走时间x(min)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是____m,A、C两点之间的距离是____m,a=____m/min;
(2)求线段EF所在直线的函数解析式;
(3)设线段FG∥x轴.
①当3≤x≤4时,甲机器人的速度为____m/min;
②直接写出两机器人出发多长时间相距28m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面给出六个函数解析式:,,,,,.
小明根据学习二次函数的经验,分析了上面这些函数解析式的特点,研究了它们的图象和性质。下面是小明的分析和研究过程,请补充完整:
(1)观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如_______,其中x为自变量;
(2)如图,在平面直角坐标系中,画出了函数的部分图象,用描点法将这个函数的图象补充完整;
(3)对于上面这些函数,下列四个结论:
①函数图象关于y轴对称
②有些函数既有最大值,同时也有最小值
③存在某个函数,当(m为正数)时,y随x的增大而增大,当时,y随x的增大而减小
④函数图象与x轴公共点的个数只可能是0个或2个或4个
所有正确结论的序号是________;
(4)结合函数图象,解决问题:若关于x的方程有一个实数根为3,则该方程其它的实数根为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=BC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+2ax-3与x轴交于A、B(1,0)两点(点A在点B的左侧),与y轴交于点C,将抛物线沿y轴平移m(m>0)个单位,当平移后的抛物线与线段OA有且只有一个交点时,则m的取值范围是_______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
(1)求证:AH是⊙O的切线;
(2)若OB=4,AC=6,求sin∠ACB的值;
(3)若,求证:CD=DH.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com