精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,函数y= (k1>0,x>0)、函数y= (k2<0,x<0)的图象分别经过OABC的顶点A、C,点B在y轴正半轴上,AD⊥x轴于点D,CE⊥x轴于点E,若|k1|:|k2|=9:4,则AD:CE的值为(
A.4:9
B.2:3
C.3:2
D.9:4

【答案】D
【解析】解:作AF⊥OB于F,如图所示:

则∠AFB=∠OEC=∠ADO=90°,AF=OD,CE∥OB,

∴∠OCE=∠BOC,

∵四边形OABC是平行四边形,

∴OC=AB,OC∥AB,

∴∠ABF=∠BOC,

∴∠ABF=∠OCE,

在△ABF和△OCE中,

∴△ABF≌△OCE(AAS),

∴AF=OE,

∴OD=OE,

∵△AOD的面积= ADOD= k1,△OCE的面积= CEOE= |k2|,|k1|:|k2|=9:4,

= =

故选:D.

【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠B=90°,ABCD,MBC边上的一点,且AM平分∠BAD,DM平分∠ADC.

求证:(1)AMDM;

(2)MBC的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更好地推进太原市生活垃圾分类工作,改善城市生态环境,20191217日,太原市政府召开了太原市生活垃圾分类推进会,意味着太原垃圾分类战役的全面打响.某小区准备购买AB两种型号的垃圾箱,通过市场调研得知:购买3A型垃圾箱和2B型垃圾箱共需540元,购买2A型垃圾箱比购买3B型垃圾箱少用160元.

1)求每个A型垃圾箱和B型垃圾箱各多少元?

2)该小区物业计划用不多于2100元的资金购买AB两种型号的垃圾箱共20个,则该小区最多可以购买B型垃圾箱多少个?

3)在(2)的条件下,要求至少购买3B型垃圾箱,请设计出最省钱的购买方案,并求出最少购买费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售如下:

每人销售件数

1800

510

250

210

150

120

人数

1

1

3

5

3

2

1)求这15位营销人员该月销售量的平均数、中位数和众数.

2)假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理?为什么?如不合理,请你制定一个合理的销售定额,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,若,下列结论:①;②;③;④互补;⑤,其中正确的有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A被平行直线l1、l2所截,若∠1=100°,∠2=125°,则∠A的度数是( ).

A.25°
B.30°
C.35°
D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).

(1)试说明如何平移线段AC,使其与线段ED重合;
(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;
(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:

蔬菜品种

西红柿

青椒

西兰花

豆角

批发价(元/㎏)

3.6

5.4

8

4.8

零售价(元/㎏)

5.4

8.4

14

7.6

请解答下列问题:

(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300㎏,用去了1520元钱,这两种蔬菜当天全部售完一共赚了多少元钱?

(2)第二天,该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少㎏?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC和△DEF(顶点为网格线的交点),以及过格点的直线l

(1)将△ABC向右平移两个单位长度,再向下平移两个单位长度,画出平移后的三角形.

(2)画出△DEF关于直线l对称的三角形.

(3)填空:∠C+∠E   

查看答案和解析>>

同步练习册答案