精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:已知方程a22a1=012bb2=0ab≠1,求的值.

解:由a22a1=012bb2=0

可知a≠0b≠0

又∵ab≠1.

12bb2=0可变形为

根据a22a1=0的特征.

是方程x22x1=0的两个不相等的实数根,

,即.

根据阅读材料所提供的方法,完成下面的解答.

已知:3m27m2=02n2+7n3=0mn≠1,求的值.

【答案】

【解析】

2n2+7n3=0变形为,再根据3m27m2=0的特征,利用根与系数的关系得到,问题得解.

解:由3m27m2=02n2+7n3=0

可知m≠0m≠0

又∵mn≠1.

2n2+7n3=0可变形为

根据3m27m2=0的特征.

m是方程3x27x2=0的两个不相等的实数根,

根据根与系数的关系可得

.

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】材料一,在平面里有两点,若为起点,为终点,则把有方向且有长度的线段叫做向量,记为:,并且可用坐标表示这个向量,表示方法为:

,向量的长度可以表示成

例如:

所以

材料二:若,则

时,则

根据材料解决下列问题:

已知中,

1________ ___________

2)当时,求证:是直角三角形.

3)若,求使恒成立的的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】元旦期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:

型号

进价(元/只)

售价(元/只)

10

12

15

23

1)该店用1300元可以购进两种型号的文具各多少只?

2)若把(1)中所购进两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一副三角板的直角重合放置,其中∠A30°,∠CDE45°.

1)如图1,求∠EFB的度数;

2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.

①当旋转至如图2所示位置时,恰好CDAB,则∠ECB的度数为   

②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到,请解答下列问题:

1)写出图2中所表示的数学等式____________________________________

2)根据整式乘法的运算法则,通过计算验证上述等式.

3)利用(1)中得到的结论,解决下面的问题:

,则_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于 的一元二次方程 有两个实数根
(1)求实数 的取值范围;
(2)当 时,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的四个顶点分别在四条平行线 上,这四条直线中相邻两条之间的距离依次为 >0, >0, >0).

(1)求证: =
(2)设正方形ABCD的面积为S,求证:S=
(3)若 ,当 变化时,说明正方形ABCD的面积S随 的变化情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是某同学对多项式(x24x+2)(x24x+6+4进行因式分解的过程.

解:设x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列问题:

1)该同学第二步到第三步运用了因式分解的_______

A.提取公因式

B.平方差公式

C.两数和的完全平方公式

D.两数差的完全平方公式

2)该同学因式分解的结果是否彻底?________.(填彻底不彻底)若不彻底,请直接写出因式分解的最后结果_________

3)请你模仿以上方法尝试对多项式(x22x)(x22x+2+1进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是该抛物线上的点,则y1<y2<y3 , 正确的个数有(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

同步练习册答案