【题目】如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.
(1)求证:∠A=2∠E,以下是小明的证明过程,请在括号里填写理由.
证明:∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知)
∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(_________)
∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质)
∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知)
∴∠ACD=2∠2,∠ABC=2∠1(_______)
∴∠A=2∠2﹣2∠1(_________)
=2(∠2﹣∠1)(_________)
=2∠E(等量代换)
(2)如果∠A=∠ABC,求证:CE∥AB.
【答案】(1)见解析;(2)证明见解析.
【解析】
(1)根据角平分线的性质以及三角形外角的性质即可求证;
(2)由(1)可知:∠A=2∠E,由于∠A=∠ABC,∠ABC=2∠ABE,所以∠E=∠ABE,从而可证AB∥CE.
解:(1)∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知),
∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(三角形外角的性质),
∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质),
∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知),
∴∠ACD=2∠2,∠ABC=2∠1(角平分线的性质 ),
∴∠A=2∠2﹣2∠1( 等量代换),
=2(∠2﹣∠1)(提取公因数),
=2∠E(等量代换);
(2)由(1)可知:∠A=2∠E
∵∠A=∠ABC,∠ABC=2∠ABE,
∴2∠E=2∠ABE,
即∠E=∠ABE,
∴AB∥CE.
科目:初中数学 来源: 题型:
【题目】如图,矩形的顶点、分别在、轴的正半轴上,点为边上的点, ,反比例函数在第一象限内的图象经过点和边上的点.
(1)求、的值和反比例函数的表达式.
(2)将矩形的一角折叠,使点与点重合,折痕分别与轴, 轴正半轴交于点,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A在平面直角坐标系中第一象限内,将线段AO平移至线段BC,其中点A与点B对应.
(1)如图(1),若,连接AB,AC,在坐标轴上存在一点D,使得,求点D的坐标;
(2)如图(2),若,点P为y轴上一动点(点P不与原点重合),请直接写出与之间的数量关系(不用证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一元二次方程:M:ax2+bx+c=0; N:cx2+bx+a=0,其中ac≠0,a≠c,以下四个结论:
①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
②如果方程M有两根符号相同,那么方程N的两根符号也相同;
③如果m是方程M的一个根,那么是方程N的一个根;
④如果方程M和方程N有一个相同的根,那么这个根必是x=1
正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面的几个算式:
1+2+1=4=2×2;1+2+3+2+1=9=3×3;
1+2+3+4+3+2+1=16=4×4;。
根据上面几道题的规律,计算下面的题:
1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1的值为__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.
(1)求证:△ADE≌△ABF.
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全球气候变暖导致-些冰川融化并消失,在冰川|消失12年后,一种低等植物苔藓,就开始在岩石上生长,每一个苔藓都会长成近似的圆形,苔藓的直径和其生长年限近似地满足如下的关系式:d=7 (t≥12),其中d表示苔藓的直径,单位是厘米,t代表冰川消失的时间(单位:年)。
(1)计算冰川消失16年后苔藓的直径为多少厘米?
(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2015,则m的值是( )
A.43B.44C.45D.46
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y =-x+7与正比例函数y=x的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是直角三角形?若存在,求t的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com