精英家教网 > 初中数学 > 题目详情

【题目】数学很酷,让我们用理性思维这一利器,去一几何的魔法世界吧.请按要求,完成下面的绘图:作图要求:仅使用无刻度直尺:要构造的点必须是格点.

具体要求:

1)在如图6×6网格中,构造所有等腰三角形,其中个点为A,且一条边长为;符合条件的三角形有     个,在图上标出.

2)简述构造长度为的线段的理论依据及计算过程.

【答案】15,图形见解析;(2)依据:勾股定理,计算过程:

【解析】

1)先利用勾股定理计算出的边长,然后利用等腰三角形的定义画三角形即可;

2)所依据的是勾股定理,利用勾股定理 即可得出答案.

1)有5个等腰三角形(AEB,△ADC,△AHB,△AFC,△ABC),如图所示.

故答案为:5

2)依据:勾股定理,

因为是在网格中,所以要使两个正整数的平方和为34才可以,只有 才成立

计算过程:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC时,为避免上楼时墙角F碰头,设计墙角F到楼梯的竖直距离FG1.75m.他量得客厅高AB=2.8m,楼梯洞口宽AF=2m.阁楼阳台宽EF=3m.请你帮助汪老师解决下列问题:

(1)要使墙角F到楼梯的竖直距离FG1.75m,楼梯底端C到墙角D的距离CD是多少米?

(2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶小于20cm,每个台阶宽要大于20cm,问汪老师应该将楼梯建几个台阶?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABO上,直线ACO的切线,ODOB,连接ABOC于点D

求证:AC=CD

AC=2AO=,求OD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,中线BECD相交于点O,连接DE,下列结论:=; ②=;③=;④=.其中正确的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产的某种产品按质量分为个档次,生产第一档次(即最低档次)的产品一天生产件,每件利润元,每提高一个档次,利润每件增加元.

1)每件利润为元时,此产品质量在第几档次?

2)由于生产工序不同,此产品每提高一个档次,一天产量减少件.若生产第档的产品一天的总利润为元(其中为正整数,且),求出关于的函数关系式;若生产某档次产品一天的总利润为元,该工厂生产的是第几档次的产品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于函数y=﹣2x+1,下列结论正确的是(  )

A. 图象必经过点(﹣2,1) B. 图象经过第一、二、三象限

C. 当x>时,y<0 D. y随x的增大而增大

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线在平面直角坐标系中与轴交于点A,点B(-3,3)也在直线上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线上.

(1)求点C的坐标和直线的解析式;

(2)已知直线经过点B,与轴交于点E,求△ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线y=-分别与x轴、y轴交于点AB,且点A的坐标为(8,0),四边形ABCD是正方形.

1)填空:b=

2)求点D的坐标;

3)点M是线段AB上的一个动点(AB除外),试探索在x上方是否存在另一个点N,使得以OBMN为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数ab,我们可以用min{ab}表示ab两数中较小的数,例如min{3,-1}=-1min{22}2. 类似地,若函数y1y2都是x的函数,则ymin{y1y2}表示函数y1y2取小函数

1)设y1xy2,则函数ymin{x }的图像应该是 中的实线部分.

2)请在下图中用粗实线描出函数ymin{(x2)2(x2)2}的图像,并写出该图像的三条不同性质:

3)函数ymin{(x4)2(x2)2}的图像关于 对称.

查看答案和解析>>

同步练习册答案