【题目】某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)
【答案】
(1)
设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组
,解方程组即可得到甲材料每千克15元,乙材料每千克25元。
(2)
设生产A产品m件,生产B产品(50-m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m)+25×20(50-m)=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;
(3)
设总生产成本为W元,加工费为:200m+300(50-m),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m)=-200m+55000,根据一次函数的性质得到W 随m的增大而减小,然后把m=22代入计算,即可得到最低成本.
【解析】
①设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组
,解方程组即可得到甲材料每千克15元,乙材料每千克25元;
②设生产A产品m件,生产B产品(50-m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m)+25×20(50-m)=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;
③设总生产成本为W元,加工费为:200m+300(50-m),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m)=-200m+55000,根据一次函数的性质得到W 随m的增大而减小,然后把m=22代入计算,即可得到最低成本.
科目:初中数学 来源: 题型:
【题目】下面是一名学生所做的4道练习题:①﹣22=4②a3+a3=a6③4m﹣4= ④(xy2)3=x3y6 , 他做对的个数( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明去超市买三种商品.其中丙商品单价最高.如果购买3件甲商品、2件乙商品和1件丙商品,那么需要付费20元,如果购买4件甲商品,3件乙商品和2件丙商品,那么需要付费32元.
(1)如果购买三种商品各1件,那么需要付费多少元?
(2)如果需要购买1件甲商品,3件乙商品和2件丙商品,那么小明至少需多少钱才能保证一定能全部买到?(结果精确到元)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过( )
A.0.03
B.0.02
C.30.03
D.29.98
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三个同学对问题“若方程组 的解是 ,求方程组 的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以3,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com