精英家教网 > 初中数学 > 题目详情

【题目】三个同学对问题“若方程组 的解是 ,求方程组 的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以3,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是

【答案】
【解析】解:把 代入 , ∴(a2﹣a1)+2(b2﹣b1)=c2﹣c1
∵方程组 ,解得,(a2﹣a1)x+2(b2﹣b1)y=3(c2﹣c1),
∵3(a2﹣a1)+6(b2﹣b1)=3(c2﹣c1),
∴(a2﹣a1)x+2(b2﹣b1)y=3(a2﹣a1)+6(b2﹣b1),
∴解得
故答案为:
先把 代入 ,求得 ,再求出(a2﹣a1)x+2(b2﹣b1)y=3(c2﹣c1),利用代换法求出(a2﹣a1)x+2(b2﹣b1)y=3(a2﹣a1)+6(b2﹣b1),即可得出方程组的解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.
(1)甲、乙两种材料每千克分是多少元?
(2)工厂用于购买甲、乙两种材料的金不超38000元,且生B品不少于28件,符合条件的生方案有哪几种?
(3)在(2)的条件下,若生一件A品需加工200元,生一件B品需加工300元,应选择哪种生方案,使生产这50品的成本最低?(成本=材料+加工

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC,则下列结论:①abc0;②;③ac﹣b+1=0;④OAOB=﹣.其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若边长为a的正方形的面积等于长为b+c,宽为bc的长方形的面积,则以abc为三边长的三角形是________三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为420米,求这栋楼的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a,b,c为正数,满足如下两个条件:
a+b+c=32 ①

是否存在以 为三边长的三角形?如果存在,求出三角形的最大内角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数关系中,属于正比例函数关系的是(
A.圆的面积与它的半径
B.面积为常数S时矩形的长y与宽x
C.路程是常数时,行驶的速度v与时间t
D.三角形的底边是常数a时它的面积S与这条边上的高h

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明骑自行车上学,一开始以某一恒定的速度行驶,但行驶至途中自行车发生了故障,只好停下来修车,车修好后,因怕耽误了上课,他比修车前加快了骑车的速度,下面四幅图中最能反映小明这段行程的是(    )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=8,将△ABC沿CB向右平移得到△DEF.若四边形ABED的面积等于8,则平移距离等于(  )

A.2
B.4
C.8
D.16

查看答案和解析>>

同步练习册答案