【题目】A.B两地之间有一条笔直的公路,甲车从A地出发匀速向B地行驶,中途因有事停留了1小时后按原速驶向B地;在甲车出发的同时乙车从B地出发匀速向A地行驶,到达A地后,立即按原路原速返回到B地。两车在行驶的过程中,甲乙两车距A地的路程y(千米)与行驶时间x(小时)之间的函数关系式如图所示,请结合图像回答下列问题:
(1)在图像的(_____)中填入正确的数值
(2)求甲车在中途因事停留后驶向B地过程中,y与x之间的函数关系式
(3)直接写出:乙车从A地出发多少小时后,甲.乙两车分别到甲车中途停留地的距离相等?
【答案】(1)6;7 ·(2)y=40x-40(3<x<7) (3) 小时·
【解析】分析:(1)根据函数图象得出AB两地的距离,由行程问题的数量关系由路程÷时间=速度就可以求出结论;
(2)先由行程问题的数量关系求出E的坐标,设y与x之间的函数关系式为,由待定系数法就可以求出结论;
(3)根据行程问题的数量关系求出乙车往返的时间,设直线的解析式为
y乙 由待定系数法求出结论,与(2)解析式构成方程组求出其解即可.
详解:(1)由函数图象,得
A.B两地的距离为:240千米,
甲车的速度为:80÷2=40千米/小时,
乙车的速度为:240÷3=80千米/小时.
故答案为:6,7.
(2)由题意,得
D(3,80).
设y与x之间的函数关系式为y=kx+b,由题意,得
解得:
∴y=40x40.
∴y与x之间的函数关系式为y=40x40;
(3)由题意,得
设直线FG的解析式为y乙 由题意,得
解得:
∴y乙
解得:
答:乙车从A地出发小时时,距甲车中途停留地的距离相等.
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠A,∠B,∠C的对边分别为a、b、c,下列说法中错误的是( )
A.如果∠C-∠B=∠A,则△ABC是直角三角形,且∠C=90;
B.如果,则△ABC是直角三角形,且∠C=90;
C.如果(c+a)( c-a)=,则△ABC是直角三角形,且∠C=90;
D.如果∠A:∠B:∠C=3:2:5,则△ABC是直角三角形,且∠C=90.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=20,BC=6,E为AB边的中点,P为CD边上的点,且△AEP是腰长为10的等腰三角形,则线段BP的长为______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学要测量某烟囱的高度,他将一面镜子放在他与烟囱之间的地面上某一位置,然后站到与镜子、烟囱成一条直线的地方,刚好从镜中看到烟囱的顶部,如果这名同学身高为1.65米,他到镜子的距离是2米,测得镜面到烟囱的距离为20米,烟囱的高度_____ 米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.
特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.
(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为 °.图3中∠MON的度数为 °.
发现感悟
解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:
小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.
小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.
(2)请你根据他们的谈话内容,求出图1中∠MON的度数.
类比拓展
受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.
(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则 t的值为 秒(直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,试探索:在旋转过程中,∠AOM与∠NOC的差是否发生变化?若不变,请求出这个差值;若变化,请求出差的变化范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)小海喜欢研究数学问题,在计算整式加减(﹣4x2﹣7+5x)+(2x+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x,最后只要写出其各项系数对齐同类项进行竖式计算如下:
所以,(﹣4x2﹣7+5x)+(2x+3x2)=﹣x2+7x﹣7.
(模仿解题)若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小海的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:如图①,AB∥CD∥EF,点G、P、H分别在直线AB、CD、EF上,连结PG、PH,当点P在直线GH的左侧时,试说明∠AGP+∠EHP=∠GPH.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式).
解:如图①,∵AB∥CD( )
∴∠AGP=∠GPD
∵CD∥EF
∴∠DPH=∠EHP( )
∵∠GPD+∠DPH=∠GPH,
∴∠AGP+∠EHP=∠GPH( )
拓展:将图①的点P移动到直线GH的右侧,其他条件不变,如图②.试探究∠AGP、∠EHP、∠GPH之间的关系,并说明理由.
应用:如图③,AB∥CD∥EF,点G、H分别在直线AB、EF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QG、QH.若∠GQH=70°,则∠AGQ+∠EHQ= 度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com