【题目】如图1所示,已知抛物线的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.
(1)直接写出D点和E点的坐标;
(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,=5:6?
(3)图2所示的抛物线是由向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.
【答案】(1)D(2,9),E(2,3);(2),;(3)(1,1)或(3,3)或(2,2).
【解析】
试题(1)把抛物线配方,即可得到顶点为D的坐标,然后设点E的坐标是(2,m),点C′的坐标是(0,n),根据△CEC′是等腰直角三角形,求出E点的坐标;
(2)令抛物线的y=0,可求得A、B的坐标,然后再根据=5:6,得到:,然后再证明△HGM∽△ABN,,从而可证得,所以HG=5,设点H(m,﹣m2+4m+5),G(m,m+1),最后根据HG=5,列出关于m的方程求解即可;
(3)分别根据∠P、∠Q、∠T为直角画出图形,然后利用等腰直角三角形的性质和一次函数的图象的性质求得点Q的坐标即可.
试题解析:(1)∵抛物线=,∴D点的坐标是(2,9),∵E为对称轴上的一点,∴点E的横坐标是2,设点E的坐标是(2,m),点C′的坐标是(0,n),∵将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上,∴△CEC′是等腰直角三角形,∴,解得:或(舍去),∴点E的坐标是(2,3),点C′的坐标是(0,1).
综上,可得D点的坐标是(2,9),点E的坐标是(2,3).
(2)如图1所示:
令抛物线的y=0得:,解得:,,所以点A(﹣1,0),B(5,0).设直线C′E的解析式是,将E(2,3),C′(0,1),代入得,解得:,∴直线C′E的解析式为,联立得:,解得:,或,∴点F得坐标为(4,5),点A(﹣1,0)在直线C′E上.∵直线C′E的解析式为,∴∠FAB=45°.过点B、H分别作BN⊥AF、HM⊥AF,垂足分别为N、M.∴∠HMN=90°,∠ADN=90°,又∵∠NAD=∠HNM=45°,∴△HGM∽△ABN,∴,∵=5:6,∴.∴,即,∴HG=5.设点H的横坐标为m,则点H的纵坐标为,则点G的坐标为(m,m+1),∴.解得:,;
(3)由平移的规律可知:平移后抛物线的解析式为=.将x=5代入得:y=5,∴点T的坐标为(5,5).设直线OT的解析式为,将x=5,y=5代入得;k=1,∴直线OT的解析式为,
①如图2所示:当PT∥x轴时,△PTQ为等腰直角三角形,
将y=5代入抛物线得:,解得:,.∴点P的坐标为(1,5).将x=1代入得:y=1,∴点Q的坐标为(1,1);
②如图3所示:
由①可知:点P的坐标为(1,5).∵△PTQ为等腰直角三角形,∴点Q的横坐标为3,将x=3代入得;y=3,∴点Q得坐标为(3,3);
③如图4所示:
设直线PT解析式为,∵直线PT⊥QT,∴k=﹣1,将k=﹣1,x=5,y=5代入得:b=10,∴直线PT的解析式为.联立得:,解得:,,∴点P的横坐标为2,将x=2代入得,y=2,∴点Q的坐标为(2,2).
综上所述:点Q的坐标为(1,1)或(3,3)或(2,2).
科目:初中数学 来源: 题型:
【题目】设m,n是任意两个实数,规定m,n两数较大的的数称作这两个数的“绝对最值”,用sec(m,n)表示。例如:sec(-1,-2)=-1,sec(1,2)=2,sec(0,0)=0,参照上面的材料,解答下列问题:
(1)sec(,3.14)=________,sec(,)=__________;
(2)若sec(-3x-1,x+1)=-3x-1,求x的取值范围;
(3)求函数与的图象的交点坐标,函数图象如图所示,请你在图中作出函数的图象,并根据图象直接写出sec(-x+2, )的最小值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠C=90°,折叠△ABC使得点C落在AB边上的E处,连接DE、CE,下列结论:①△DEB是等腰直角三角形;②AB=AC+CD;③ ;④S△CDE=S△BDE.其中正确的个数是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在布袋中装有两个大小一样,质地相同的球,其中一个为红色,一个为白色、模拟“摸出一个球是白球”的机会,可以用下列哪种替代物进行实验( )
A. “抛掷一枚普通骰子出现1点朝上”的机会
B. “抛掷一枚啤酒瓶盖出现盖面朝上”的机会
C. “抛掷一枚质地均匀的硬币出现正面朝上”的机会
D. “抛掷一枚普通图钉出现针尖触地”的机会
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线;
(2)求证:ED平分∠BEP;
(3)若⊙O的半径为5,CF=2EF,求PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣2经过点A(4,0),B(1,0).
(1)求出抛物线的解析式;
(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;
(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB,作图.
步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;
步骤2:过点M作PQ的垂线交 于点C;
步骤3:画射线OC.
则下列判断:①=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com