精英家教网 > 初中数学 > 题目详情

【题目】如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.
如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…
设游戏者从圈A起跳.

(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1
(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她与嘉嘉落回到圈A的可能性一样吗?

【答案】
(1)解:∵共有4种等可能的结果,落回到圈A的只有1种情况,

∴落回到圈A的概率P1=


(2)解:列表得:

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(3,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(4,4),

∴最后落回到圈A的概率P2= =

∴她与嘉嘉落回到圈A的可能性一样


【解析】(1)嘉嘉随机掷一次骰子共有4种等可能的结果,落回到圈A的只有1种情况,根据概率公式求出概率;(2)根据题意列出表格,由表格知共有16种等可能的结果,最后落回到圈A的有4种,根据概率公式求出最后落回到圈A的概率得出结论。
【考点精析】根据题目的已知条件,利用列表法与树状图法和概率公式的相关知识可以得到问题的答案,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点EF分别在边ABCD上,下列条件不能判定四边形DEBF一定是平行四边形的是(

A.AECFB.DEBFC.ADE=∠CBFD.AED=∠CFB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD△ABC的角平分线,点OAB的中点,连接DO并延长到点E,使OE=OD,连接AEBE

1)求证:四边形AEBD是矩形;

2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC≌△ADE,∠DAC70°,∠BAE100°BCDE相交于点F,则∠DFB度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读理解:

如图①,在ABC中,若AB=8AC=4,求BC边上的中线AD的取值范围是   

2)问题解决:如图②,在ABCDBC边上的中点,DEDF于点DDEAB于点EDFAC于点F,连接EF,求证:BE+CFEF

3)问题拓展:如图③,在四边形ABCD中,∠B+D=180°CB=CD,∠BCD=140°,以C为顶点作一个70角的两边分别交ABADEF两点,连接EF,探索线段BEDFEF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,则∠A、∠C、∠E、∠F满足的数量关系是(  )

A. A=∠C+∠E+∠F B. A+∠E﹣∠C﹣∠F=180°

C. A﹣∠E+∠C+∠F=90° D. A+∠E+∠C+∠F=360°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.

(1)求一次函数与反比例函数的解析式;

(2)求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:平面直角坐标系中,A(a,3)、B(b,6)、C(c,1),abc都为实数,并且满足3b-5c=-2a-18,4bc=3a+10

(1) 请直接用含a的代数式表示bc

(2) 当实数a变化时,判断ABC的面积是否发生变化?若不变,求其值;若变化,求其变化范围

(3) 当实数a变化时,若线段ABy轴相交,线段OB与线段AC交于点P,且SPABSPBC,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直线l分别交ABCDEF两点,且ABCD

1 说明:∠1=∠2

2 如图2,点MNABCD之间,且在直线l左侧,若EMN+∠FNM=260°

求:AEM+∠CFN的度数;

如图3,若EP平分AEMFP平分CFN,求P的度数;

3 如图4∠2=80°,点G在射线EB上,点HAB上方的直线l上,点Q是平面内一点,连接QGQH,若AGQ=18°FHQ=24°,直接写出GQH的度数.

查看答案和解析>>

同步练习册答案