精英家教网 > 初中数学 > 题目详情
18.如图,正方形ABCD的边长为6,点O是对角线AC,BD的交点,点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足为点F,连接OF.求:
(1)CF的长;
(2)OF的长.

分析 (1)在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,利用勾股定理可得BE的长,由射影定理得BF的长,易得EF的长,求得CF;
(2)由(1)得出等腰直角三角形GOF,在RT△BCE中,根据射影定理求得GF的长,即可求得OF的长.

解答 解:(1)如图,在BE上截取BG=CF,连接OG,
∵RT△BCE中,CF⊥BE,
∴∠EBC=∠ECF,
∵∠OBC=∠OCD=45°,
∴∠OBG=∠OCF,
在△OBG与△OCF中,
$\left\{\begin{array}{l}{OB=OC}\\{∠OBG=∠OCF}\\{BG=CF}\end{array}\right.$,
∴△OBG≌△OCF(SAS),
∴OG=OF,∠BOG=∠COF,
∴OG⊥OF,
在RT△BCE中,BC=DC=6,DE=2EC,
∴EC=2,
∴BE=$\sqrt{B{E}^{2}+C{E}^{2}}$=$\sqrt{{6}^{2}+{2}^{2}}$=2$\sqrt{10}$,
∵BC2=BF•BE,
则62=BF•2$\sqrt{10}$解得:BF=$\frac{9\sqrt{10}}{5}$,
∴EF=BE-BF=$\frac{\sqrt{10}}{5}$,
∵CF2=BF•EF,
∴CF=$\frac{3\sqrt{10}}{5}$;

(2)由(1)知,
GF=BF-BG=BF-CF=$\frac{6\sqrt{10}}{5}$,
在等腰直角△OGF中
OF2=$\frac{1}{2}$GF2
∴OF=$\frac{6\sqrt{5}}{5}$.

点评 本题考查了全等三角形的判定和性质,直角三角形的判定以及射影定理、勾股定理的应用,作出适当的辅助线,构建全等三角形是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.如图,?ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则 AB=19cm,BC=11cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列计算正确的是(  )
A.a5+a5=a10B.-a6•(-a)4=a10C.(-bc)4÷(-bc)2=b2c2D.(-ab)2•a=-a3b2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知点A(a,5),B(2,2-b),C(4,2)且AB∥y轴,BC∥x轴,则a-b=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在△ABC中,沿DE折叠,点A落在三角形所在的平面内的点为A1,若∠A=30°,∠BDA1=80°,则∠CEA1的度数为20°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,△ABC中,AB=6cm,AC=5cm,BC=7cm,BD平分∠ABC,CE平分∠ACB,AD⊥BD,AE⊥CE,则DE=2cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至点A1、B1、C1,使得A1B=AB,B1C=BC,C1A=CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至A2,B2,C2,使得A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2…,按此规律继续下去.第n次操作得到△AnBnCn,则S1=7,△AnBnCn的面积Sn=7n

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若-7x2my4n与3x2y11-3m合并后仍是单项式,则m=1,n=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知:如图,∠ACB=∠DBC,如果要说明△AOB≌△DOC,那么还需要添加一个条件,这个条件可以是∠A=∠D.

查看答案和解析>>

同步练习册答案