【题目】仔细观察下列等式:
第1个:22﹣1=1×3
第2个:32﹣1=2×4
第3个:42﹣1=3×5
第4个:52﹣1=4×6
第5个:62﹣1=5×7
…
这些等式反映出自然数间的某种运算规律.按要求解答下列问题:
(1)请你写出第6个等式: ;
(2)设n(n≥1)表示自然数,则第n个等式可表示为 ;
(3)运用上述结论,计算:.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.
(1)求证:DF是线段AB的垂直平分线;
(2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:
(1)求反比例函数的表达式;
(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知梯形ABCD中,AD∥BC,AB=CD,点E在对角线AC上,且满足∠ADE=∠BAC.
(1)求证:CDAE=DEBC;
(2)以点A为圆心,AB长为半径画弧交边BC于点F,联结AF.求证:AF2=CECA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,,求的度数. (提示:作).
(2)如图2,,当点在线段上运动时,,求与、之间的数量关系,并说明理由.
(3)在(2)的条件下,如果点在射线上运动,请你直接写出与、之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2017个等边三角形的边长等于( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为( )
A. 3B. 5C. 2D. 6.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,等边三角形ABC的边长为5,点P在线段AB上,点D在线段BC上,且△PDE是等边三角形.
(1)初步尝试:若点P与点A重合时(如图1),BD+BE= .
(2)类比探究:将点P沿AB方向移动,使AP=1,其余条件不变(如图2),试计算BD+BE的值是多少?
(3)拓展迁移:如图3,在△ABC中,AB=AC,∠BAC=70°,点P在线段AB的延长线上,点D在线段CB的延长线上,在△PDE中,PD=PE,∠DPE=70°,设BP=a,请直接写出线段BD、BE之间的数量关系(用含a的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B作于点G,延长BG交AD于点H.在下列结论中:①;②;③ . 其中不正确的结论有( )
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com