精英家教网 > 初中数学 > 题目详情

【题目】已知,等边三角形ABC的边长为5,点P在线段AB上,点D在线段BC上,且△PDE是等边三角形.

(1)初步尝试:若点P与点A重合时(如图1),BD+BE=   

(2)类比探究:将点P沿AB方向移动,使AP=1,其余条件不变(如图2),试计算BD+BE的值是多少?

(3)拓展迁移:如图3,在△ABC中,AB=AC,∠BAC=70°,点P在线段AB的延长线上,点D在线段CB的延长线上,在△PDE中,PD=PE,∠DPE=70°,设BP=a,请直接写出线段BD、BE之间的数量关系(用含a的式子表示)

【答案】(1)5;(2)4;(3)BD﹣BE =2acos55°.

【解析】试题分析:(1)先判断出∠BPE=∠CAD,进而判断出△PBE≌△ACD,即可得出BD+BE=BC=5;
(2)先构造出等边三角形,再判断出∠BPE=∠FPD,进而判断出△PBE≌△PFD,即可得出BD+BE=BF=4;
(3)类似于(2)的方法判断出△PBE≌△PFD得出BE=DF,再判断出BF=2BG,利用用锐角三角函数求出BG=acos55°,即可BD-BE=BF=2acos55°.

试题解析:解:(1)∵△ABC和△PDE是等边三角形,

∴PE=PD,AB=AC,∠DPE=∠CAB=60°,

∴∠BPE=∠CAD,

∴△PBE≌△ACD,

∴BE=CD,

∴BD+BE=BD+CD=BC=5,

故答案为5;

(2)如图2,过点PPF∥ACBCF,

∴△FPB是等边三角形,

∴BF=PF=PB=AB﹣AP=4,∠BPF=60°,

∵△PDE是等边三角形,

∴PD=PE,∠DPE=60°,

∴∠BPE=∠FPD,

∴△PBE≌△PFD,

∴BE=DF,

∴BD+BE=BD+DF=BF=4;

(3)如图3,

过点PPF∥ACBCF,

∴∠BPF=∠BAC=70°,∠PFB=∠C,

∵AB=AC,∠BAC=70°,

∴∠ABC=∠C=55°,

∴∠PFB=∠C=∠PBF=55°,

∴PF=PB=a,

∵∠BPF=∠DPE=70°,

∴∠DPF=∠EPB,

∵PD=PE,

∴△PBE≌△PFD,

∴BE=DF,

过点PPG⊥BCG,

∴BF=2BG,

Rt△BPG中,∠PBD=55°,

∴BG=BPcos∠PBD=acos55°,

∴BF=2BG=2acos55°,

∴BD﹣BE=BD﹣DF=BF=2acos55°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价元。据此规律,请回答:

(1)商场日销售量增加_____件,每件商品盈利_____元(用含的代数式表示)。

(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细观察下列等式:

1个:2211×3

2个:3212×4

3个:4213×5

4个:5214×6

5个:6215×7

这些等式反映出自然数间的某种运算规律.按要求解答下列问题:

1)请你写出第6个等式:  

2)设nn≥1)表示自然数,则第n个等式可表示为  

3)运用上述结论,计算:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了鼓励节约用电,某地用电标准规定:如果每户每月用电不超过度,那么每度按元缴纳;超过部分则按每度元缴纳.

1)某户月份用电度,共交电费元,求

2)若该户月份的电费平均每度元,求月份共用电多少度?应交电费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=10,AC=16,点M是对角线AC上的一个动点,过点M作PQ⊥AC交AB于点P,交AD于点Q,将△APQ沿PQ折叠,点A落在点E处,当△BCE是等腰三角形时,AP的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c过点A(0,﹣6)、B(﹣2,0),与x轴的另一交点为点C.

(1)求此抛物线的解析式;

(2)将直线AC向下平移m个单位,使平移后的直线与抛物线有且只有一个公共点M,求m的值及点M的坐标;

(3)抛物线上是否存在点P,使△PAC为直角三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】发展脐橙产业,加快脱贫的步伐”.某脐橙种植户新鮮采摘了20筐脐橙,以每筐25千克为标准重量,超过或不足干克数分别用正,负数来表示,记录如下:

与标准重量的差值(单位:干克)

3

2

1.5

0

1

2.5

筐数

1

4

2

3

2

8

1)与标准重量比较,20筐脐橙总计超过或不足多少千克?

2)若脐橙毎干克售价6.5元,则出售这20筐脐橙可获得多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,ADCD于点D,EAB延长线上的一点,CE交⊙O于点F,连接OC,AC,若∠DAO=105°,E=30°.

(Ⅰ)求∠OCE的度数;

(Ⅱ)若⊙O的半径为2,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测出某塔的高度,在塔前的平地上选择一点,用测角仪测得塔顶的仰角为,在之间选择一点(三点在同一直线上)用测角仪测得塔顶的仰角为,且间的距离为40m.

(1)求点的距离;

(2)求塔高(结果精确到0.1m.)(己知).

查看答案和解析>>

同步练习册答案