精英家教网 > 初中数学 > 题目详情

【题目】如图,为了测出某塔的高度,在塔前的平地上选择一点,用测角仪测得塔顶的仰角为,在之间选择一点(三点在同一直线上)用测角仪测得塔顶的仰角为,且间的距离为40m.

(1)求点的距离;

(2)求塔高(结果精确到0.1m.)(己知).

【答案】(1)点B到AD的距离为20m;(2)塔高CD为27.3m.

【解析】分析(1)过点B作BE⊥AD于点E,然后根据AB=40m,∠A=30°,可求得点B到AD的距离。

(2)先求出∠EBD的度数,然后求出AD的长度,然后根据∠A=30°即可求出CD的高度。

详解:(1)过点B作BE⊥AD于点E,

∵AB=40m,∠A=30°,

∴BE=AB=20m,AE=m,

即点B到AD的距离为20m;

(2)在Rt△ABE中,

∵∠A=30°,∴∠ABE=60°,

∵∠DBC=75°,∴∠EBD=180°-60°-75°=45°,∴DE=EB=20m,

则AD=AE+EB=20+20=20(+1),

在Rt△ADC中,∠A=30°, ∴DC==10+10=27.3

答:塔高CD为27.3m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,等边三角形ABC的边长为5,点P在线段AB上,点D在线段BC上,且△PDE是等边三角形.

(1)初步尝试:若点P与点A重合时(如图1),BD+BE=   

(2)类比探究:将点P沿AB方向移动,使AP=1,其余条件不变(如图2),试计算BD+BE的值是多少?

(3)拓展迁移:如图3,在△ABC中,AB=AC,∠BAC=70°,点P在线段AB的延长线上,点D在线段CB的延长线上,在△PDE中,PD=PE,∠DPE=70°,设BP=a,请直接写出线段BD、BE之间的数量关系(用含a的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B于点G,延长BGAD于点H.在下列结论中:①;②;③ . 其中不正确的结论有(

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个坡角为40°的斜坡上有一棵树BC,树高4米.当太阳光AC与水平线成70°角时,该树在斜坡上的树影恰好为线段AB,求树影AB的长.(结果保留一位小数)

(参考数据:sin20°=0.34,tan20°=0.36,sin30°=0.50,tan30°=0.58,sin40°=0.64,tan40°=0.84,sin70°=0.94,tan70°=2.75)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )

A. ABBC时四边形ABCD是菱形

B. ACBD时四边形ABCD是菱形

C. 当∠ABC90°时,四边形ABCD是矩形

D. ACBD且∠ABC90°时四边形ABCD是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,BC6cm,射线AGBC,点E从点A出发沿射线AGlcm/s的速度运动,同时点F从点B出发沿射线BC2cm/s的速度运动,设运动时间为ts).

1)连接EF,当EF经过AC边的中点D时,试判定四边形AFCE的形状并说明理由;

2)当t为多少时,四边形ACFE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个用硬纸板制作的长方体包装盒展开图已知它的底面形状是正方形高为12cm

(1)制作这样的包装盒需要多少平方厘米的硬纸板?

(2)1平方米硬纸板价格为5则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,BPBQ三等分CPCQ三等分,求的度数.

查看答案和解析>>

同步练习册答案