【题目】如图,二次函数 的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.
(1)试求此二次函数的解析式;
(2)试证明:∠BAO=∠CAO(其中O是原点);
(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图象及x轴于Q、H两点,试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】
(1)解:∵点A(4,0)与B(﹣4,﹣4)在二次函数图象上,
∴
解得
∴二次函数解析式为y=﹣ x2+ x+2.
(2)解:过B作BD⊥x轴于点D,由(1)得C(0,2),
则在Rt△AOC中,tan∠CAO= = = ,
又在Rt△ABD中,tan∠BAD= = = ;
∵tan∠CAO=tan∠BAD,
∴∠CAO=∠BAO.
(3)解:由点A(4,0)与B(﹣4,﹣4),可得直线AB的解析式为y= x﹣2,
设P(x, x﹣2),(﹣4<x<4);
则Q(x,﹣ x2+ x+2),
∴PH=| x﹣2|=2﹣ x,QH=|﹣ x2+ x+2|.
∴2﹣ x=2|﹣ x2+ x+2|.
当2﹣ x=﹣ x2+x+4,
解得x1=﹣1,x2=4(舍去),
∴P(﹣1,﹣ )
当2﹣ x= x2﹣x﹣4,
解得x1=﹣3,x2=4(舍去),
∴P(﹣3,﹣ ).
综上所述,存在满足条件的点,它们是P1(﹣1,﹣ )与P2(﹣3,﹣ ).
【解析】(1)利用待定系数法把AB坐标代入抛物线解析式即可;(2)求出这两个锐角的正切值,反过来由值相等可以推得角相等;(3)竖直线段的长可转化为y上-y下,HQ的长可分类讨论HQ=yH-yQ或HQ=yQ-yH,即可求出结果.
科目:初中数学 来源: 题型:
【题目】如图,直径AE平分弦CD,交CD于点G,EF∥CD,交AD的延长线于F,AP⊥AC交CD的延长线于点P.
(1)求证:EF是⊙O的切线;
(2)若AC=2,PD= CD,求tan∠P的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD.
(1)求证:OE⊥DC.
(2)若∠AOD=120°,DE=2,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A(a,0),B(0,b),实数a、b满足.
(1)求点A、点B的坐标;
(2)若点P的坐标是P(-2,x),且,且△PAB的面积为7,求x的值;
(3)如图,过点B作BC∥x轴,Q是x轴上点A左侧的一动点连接QB,BM平分∠QBA,BN平分∠ABC,当点Q运动时直接写出____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+c(a#0)的图象如图所示,给出以下四个结论:
①abc=0,②a+b+c>0,③b=3a, ④4ac—b2<0;其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠BAC=90。 , AB=6,sinC= ,以点A为圆心,AB长为半径作弧交AC于M,分别以B、M为圆心,以大于 BM长为半径作弧,两弧相交于N,射线AN与BC相交于D,则AD的长为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com