精英家教网 > 初中数学 > 题目详情

【题目】如图,直径AE平分弦CD,交CD于点G,EF∥CD,交AD的延长线于F,AP⊥AC交CD的延长线于点P.

(1)求证:EF是⊙O的切线;
(2)若AC=2,PD= CD,求tan∠P的值.

【答案】
(1)证明:∵直径AE平分弦CD,

∴AG⊥CD(垂径定理).

∵EF∥CD(已知),

∴∠AEF=∠AGD=90°.

∴EF是⊙O的切线.


(2)∵∠CAP=∠AGC=90°,∠ACG=∠PCA.

∴△CAG∽△CPA(AA).

∴AC2=CGCP(相似三角形的对应边成比例).

又∵PD= CD(已知),

CG=GD,

∴CG= PC.而AC=2,

∴22= PCPC,∴PC2=12.

又∵AC⊥AP,∴AP2=PC2﹣AC2(勾股定理),

∴AP= .(13分)

∴tan∠P=


【解析】(1)要证EF是⊙O的切线,只需证明∠AEF=90°即可.(2)首先利用相似三角形判定定理证明△CAG∽△CPA,利用性质:对应边成比例,得到AC2=CGCP,求得PC2=12,在直角三角形APC中利用勾股定理求得AP的长度,进而利用三角函数的定义求tan∠P的值.
【考点精析】解答此题的关键在于理解相似三角形的判定与性质的相关知识,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠ABC>ADC,且∠BAD 的平分线 AE 与∠BCD 的平分线 CE 交于点 E,则∠AEC与∠ADC、ABC 之间存在的等量关系是(

A. AEC=ABC﹣2ADC B. AEC=

C. AEC= ABC﹣ADC D. AEC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,E是直线ABCD内部一点,ABCD,连接EAED

(1)探究猜想:

①若∠A=20°,∠D=40°,则∠AED= °

②猜想图①中∠AED,∠EAB,∠EDC的关系,并用两种不同的方法证明你的结论.

(2)拓展应用:

如图②,射线FEl1l2交于分别交于点EFABCDabcd分别是被射线FE隔开的4个区域(不含边界,其中区域ab位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(任写出两种,可直接写答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:

(1)此次抽样调查的样本容量是
(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,现有一个长方体水槽放在桌面上,从水槽内量得它的侧面高20cm,底面的长25cm,宽20cm,水槽内水的高度为acm,往水槽里放入棱长为10cm的立方体铁块.

1)求下列两种情况下a的值.

①若放入铁块后水面恰好在铁块的上表面;

②若放入铁块后水槽恰好盛满(无溢出).

2)若0a≤18,求放入铁块后水槽内水面的高度(用含a的代数式表示).

3)如图2,在水槽旁用管子连通一个底面在桌面上的圆柱形容器,内部底面积为50cm2,管口底部A离水槽内底面的高度为hcmha),水槽内放入铁块,水溢入圆柱形容器后,容器内水面与水槽内水面的高度差为8.2cm,若a=15,求h的值.(水槽和容器的壁及底面厚度相同)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α.

(1)如图1,当α=60°时,求证:△DCE是等边三角形.
(2)如图2.当α=45°时,求证:① = ;②CE⊥DE.
(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系(用α表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学活动课上,研究用正多边形镶嵌平面.请解决以下问题:

(1)用一种正多边形镶嵌平面

例如,用 6 个全等的正三角形镶嵌平面,摆放方案如图所示:

若用 m 个全等的正 n 边形镶嵌平面,求出 m,n 应满足的关系式;

(2)用两种正多边形镶嵌平面

若这两种正多边形分别是边长相等的正三角形和正方形,请画出两种不同的摆放方案;

(3)用多种正多边形镶嵌平面

若镶嵌时每个顶点处的正多边形有 n 个,设这 n 个正多边形的边数分别为 x1,x2,…,xn,求出 x1,x2,…,xn 应满足的关系式.(用含 n 的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°,AB3AC4,点PBC上任意一点,连PA,以PAPC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为(  )

A. B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数 的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.

(1)试求此二次函数的解析式;
(2)试证明:∠BAO=∠CAO(其中O是原点);
(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图象及x轴于Q、H两点,试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案