精英家教网 > 初中数学 > 题目详情

【题目】如图所示,O是矩形ABCD的对角线的交点,DEACCEBD

1)求证:OEDC

2)若∠AOD120°,DE2,求矩形ABCD的面积.

【答案】(1)证明见解析(2)4

【解析】

(1) 要证OE⊥DC,可先证四边形OCED是菱形.由DE∥AC,CE∥BD,可得四边形OCED是平行四边形;又因为ABCD是矩形,所以OC=OD.有一组邻边相等的平行四边形是菱形.

(2)(1) 得出△ODC是等边三角形,所以 DC=OD=OC=2 ,由四边形ABCD是矩形,得到AC=2CO=4,RtADC中,由勾股定理得AD=2 ,再利用矩形面积公式即可解答.

(1)证明:

∵DE∥AC,CE∥BD

∴DE∥OC,CE∥OD

四边形ODEC是平行四边形

四边形ODEC是矩形

∴OD=OC

四边形ODEC是菱形

∴OE⊥DC

(2)解:∵DE=2,由(1)知,四边形ODEC是菱形

∴OD=OC=DE=2

∵∠AOD=120°

∴∠DOC=60°

△ODC是等边三角形

∴DC=OD=OC=2

四边形ABCD是矩形

∴AC=2CO=4

Rt△ADC中,由勾股定理得AD=2

∴S矩形ABCD=2×2=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:

(1)此次抽样调查的样本容量是
(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC90°,AB3AC4,点PBC上任意一点,连PA,以PAPC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为(  )

A. B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个正比例函数图象与一个一次函数图象交于点A(3,4),且一次函数的图象与y轴相交于点B(0,-5).

(1)求这两个函数的表达式;

(2)AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游泳馆普通票价20/暑假为了促销新推出两种优惠卡

金卡售价600/每次凭卡不再收费

银卡售价150/每次凭卡另收10

暑假普通票正常出售两种优惠卡仅限暑假使用不限次数.设游泳x次时所需总费用为y

(1)分别写出选择银卡、普通票消费时,yx之间的函数关系式

(2)在同一坐标系中若三种消费方式对应的函数图象如图所示请求出点A、B、C的坐标

(3)请根据函数图象直接写出选择哪种消费方式更合算

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题原型)

如图①,ABCD,点M在直线ABCD之间,则∠M=∠B+D,小明解决上述问题的过程如下:

如图②,过点MMNAB

则∠B______________

ABCD,(已知)

MNAB(辅助线的做法)

MNCD______

∴∠______=∠D______

∴∠B+D=∠BMD

请完成小明上面的过程.

(问题迁移)

如图③,ABCD,点M与直线CD分别在AB的两侧,猜想∠M、∠B、∠D之间有怎样的数量关系,并加以说明.

(推广应用)

1)如图④,ABCD,点M在直线ABCD之间,∠ABM的平分线与∠CDM的平分线交于点N,∠M96°,则∠N_____°

2)如图⑤,ABCD,点M与直线CD分别在AB的两侧,∠ABM的平分线与∠CDM的平分线交于点N,∠N25°,则∠M______°

3)如图⑥,ABCD,∠ABG的平分线与∠CDE的平分线交于点M,∠G78°,∠F64°,∠E64°,则∠M_______°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数 的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.

(1)试求此二次函数的解析式;
(2)试证明:∠BAO=∠CAO(其中O是原点);
(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图象及x轴于Q、H两点,试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.
如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…
设游戏者从圈A起跳.

(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1
(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她与嘉嘉落回到圈A的可能性一样吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在中,DBC的中点,求BC边上的中线AD的取值范围.

小明在组内经过合作交流,得到了如下的解决方法:延长ADE,使,请补充完整证明的推理过程.

求证:

证明:延长AD到点E,使

已作

______

中点定义

______

探究得出AD的取值范围是______

(感悟)解题时,条件中若出现中点”“中线等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.

(问题解决)

如图2中,AD的中线,,且,求AE的长.

查看答案和解析>>

同步练习册答案