【题目】在长方形ABCD中,AB=8cm,BC=4cm,动点P从点A出发,沿路线A→B→C作匀速运动,速度为2cm/秒,运动的时间为t秒.
(1)用含t的代数式表示点P运动的路程为 cm,当t=4.5时,点P在边 上;
(2)当点P在线段AB上运动时,写出△ADP的面积S(cm2)与t(秒)之间的关系式,并求当t为何值时,S=8;
(3)在点P运动的过程中,△ADP的形状也随之改变,判断并直接写出t为何值时,△ADP是等腰三角形.
【答案】(1)2t,BC;(2),当时,S=8;(3)当或 时△ADP是等腰三角形.
【解析】
(1)根据路程=速度时间,即可得到答案;
(2)由AD=BC=4,由三角形的面积公式,即可得到S与t的关系式,然后再把S=8代入,求出t的值即可;
(3)由△ADP是等腰三角形,可分为两种情况讨论;①当点P在AB上时,AD=AP=4;②当点P在BC上时,有AP=DP;计算即可得到答案.
(1)如图,
∵动点P从点A出发,沿路线A→B→C作匀速运动,速度为2cm/秒,运动的时间为t秒,∴用含t的代数式表示点P运动的路程为: cm.
当t=4.5时,路程为:,
又AB=8cm,8<9,
所以此时点P运动到BC上,
故答案为:2t,BC;
(2)∵四边形ABCD是长方形,
∴AD=BC=4,AP=2t,
∴,
∴S=4t,()
当S=8时,代入得:
∴;
(3)∵△ADP是等腰三角形,
∴AD=AP或AP=DP;
①当点P在AB上时,有
∴AD=AP,
∴2t=4,解得:;
②当点P在BC上时,有
∴AP=DP,
此时点P是BC的中点,
∴,
∴AB+BP=8+2=10,
∴点P运动的时间为:s,
综合上述,当或时△ADP是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,把△ABC纸片沿DE折叠,当A落在四边形BCDE内时,则∠A与∠1+∠2之间有始终不变的关系是( )
A.∠A=∠1+∠2B.2∠A=∠1+∠2
C.3A=∠1+∠2D.3∠A=2(∠1+∠2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为B(-1,3),与轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①;②;③;④; ⑤其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】邮递员骑车从邮局出发,先向南骑行2 km,到达A村,继续向南骑行3 km到达B村,然后向北骑行9 km到达C村,最后回到邮局.
(1)以邮局为原点,以向北为正方向,用0.5 cm表示1 km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置.
(2)C村离A村有多远?
(3)邮递员一共骑了多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.
(1)求抛物线的表达式;
(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;
(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PC,PB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(原题)已知直线AB∥CD,点P为平行线AB,CD之间的一点.如图1,若∠ABP=50°,∠CDP=60°,BE平分∠ABP,DE平分∠CDP,求∠BED的度数.
(探究)如图2,当点P在直线AB的上方时,若∠ABP=α,∠CDP=β,∠ABP和∠CDP的平分线交于点E1,∠ABE1与∠CDE1的角平分线交于点E2,∠ABE2与∠CDE2的角平分线交于点E3,…以此类推,求∠En的度数.
(变式)如图3,∠ABP的角平分线的反向延长线和∠CDP的补角的角平分线交于点E,试猜想∠P与∠E的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“了解”部分所对应扇形的圆心角为 度;
(2)请补全条形统计;
(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)在一次蜡烛燃烧试验中,甲、乙两根蜡烛燃烧时剩余部分的高度 (厘米)与燃烧时间 (小时)之间的关系如图所示,其中乙蜡烛燃烧时与之间的函数关系式是.
(1)甲蜡烛燃烧前的高度是_________厘米,乙蜡烛燃烧的时间是________小时.
(2)求甲蜡烛燃烧时与之间的函数关系式.
(3)求出图中交点的坐标,并说明点的实际意义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】线段AB和线段CD交于点O,OE平分∠AOC,点F为线段AB上一点(不与点A和点O重合)过点F作 FG//OE,交线段CD于点G,若∠AOD=110°,则∠AFG的度数为_____°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com