精英家教网 > 初中数学 > 题目详情
精英家教网如图,AD是△ABC的中线,∠ADC=45°.把△ABC沿直线AD折过来,点C落在点C′的位置上,如果BC=4,那么BC′=
 
分析:此题较简单,首先根据折叠的性质可得:∠ADC=∠ADC′=45°,即DC′⊥DC,且DC=DC′=BD,由此可得△BDC′是个直角边为4的等腰直角三角形,由此得解.
解答:解:∵把△ABC沿直线AD折过来,点C落在点C′的位置,
∴△ADC≌△ADC′,
∴∠ADC=∠ADC′=45°,DC=DC′=BD,
∴△BDC′是等腰直角三角形,且直角边为2,
那么斜边BC′=2
2
点评:此题主要考查的是图形的翻折变换,能够判断出△BDC′的形状是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案