【题目】某校对七年级300名学生进行了教学质量监测(满分100分),现从中随机抽取部分学生的成绩进行整理,并绘制成如图不完整的统计表和统计图:
注:60分以下为“不及格”,60~69分为“及格”,70~79分为“良好”,80分及以上为“优秀”
请根据以上信息回答下列问题:
(1)补全统计表和统计图;
(2)若用扇形统计图表示统计结果,则“良好”所对应扇形的圆心角为多少度?
(3)请估计该校七年级本次监测成绩为70分及以上的学生共有多少人?
【答案】(1)9,0.40;(2)162°;(3)255.
【解析】
(1)首先根据不合格的人数及频数求得总人数,然后减去其他各组的频数即可求得良好组的频数,用频数除以总人数即可求得频率;
(2)用良好的频率乘以360°即可求得其表示的扇形的圆心角的度数;
(3)用总人数乘以70分以上的频率即可求得人数.
解:(1)解:因为不及格的频数为1,频率为0.05,所以总人数为1÷0.05=20人,所以良好的频数为20﹣1﹣2﹣8=9,优秀的频率为8÷20=0.40.
故答案为:9,0.40;
统计图补全为:
(2)0.45×360°=162°
答:“良好”所对应扇形的圆心角为162°;
(3)300×(0.45+0.40)=255.
答:估计该校本次监测成绩70分及以上的学生总共约有255人.
故答案为:(1)9,0.40;(2)162°;(3)255.
科目:初中数学 来源: 题型:
【题目】甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元),图中折线OAB表示与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元;
(2)求、与x的函数表达式;
(3)在图中画出与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O内切于Rt△ABC,点P、点Q分别在直角边BC、斜边AB上,PQ⊥AB,且PQ与⊙O相切,若AC=2PQ,则tan∠B的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0;⑦方程ax2+bx+c=﹣4有实数解,正确的有( )
A. 3个 B. 4个 C. 5个 D. 6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.
(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)
(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)
(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.5°≈2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB在平面直角坐标系中,已知:B(0,),点A在x轴的正半轴上,OA=3,∠BAD=30°,将△AOB沿AB翻折,点O到点C的位置,连接CB并延长交x轴于点D.
(1)求点D的坐标;
(2)动点P从点D出发,以每秒2个单位的速度沿x轴的正方向运动,当△PAB为直角三角形时,求t的值;
(3)在(2)的条件下,当△PAB为以∠PBA为直角的直角三角形时,在y轴上是否存在一点Q使△PBQ为等腰三角形?如果存在,请直接写出Q点的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EGED.
(1)求证:DE⊥EF;
(2)求证:BC2=2DFBF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=8,BC=6,E,F分别在边AC,BC,若以EF为直径作圆经过AB上某点D,则EF长的取值范围为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,点P是线段AB的中点,且AB=12,现分别以AP,BP为边,在AB的同侧作等边△MAP和△NBP,连结MN。
(1)请只用不含刻度的直尺在图1中找到△MNP外接圆的圆心O,并保留作图痕迹;
(2)若将“点P是线段AB的中点”改成“点P是线段AB上异于端点的任意一点”,其余条件不变(如图2),请用文字写出△MNP外接圆圆心O的位置,并求出该圆半径的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com