【题目】如图,△ABC是等边三角形,AN=BM,BN,MC相交于O,CH⊥BN于点H,求证:2OH=OC.
【答案】证明见解析.
【解析】
已知△ABC是等边三角形,根据等边三角形的性质可得AB=BC=AC,且三内角为60°,再由AN=BM,利用SAS得到△BAN≌△CBM,利用全等三角形的对应角相等及三角形外角的性质得到∠NOC=60°,在Rt△OHC中,利用30°角所对的直角边等于斜边的一半即可得2OH=OC.
∵△ABC为等边三角形,
∴AB=BC=AC,∠A=∠ABC=∠ACB=60°,
在△BAN和△CBM中,
,
∴△BAN≌△CBM(SAS),
∴∠ABN=∠BCM,
∵∠ABN+∠OBC=60°,
∴∠BCM+∠OBC=60°,
∵∠NOC为△OBC的外角,
∴∠NOC=∠BCM+∠OBC=60°,
在Rt△OHC,∠HCO=30°,
则2OH=OC.
科目:初中数学 来源: 题型:
【题目】某商店购进一批肥料,为了验证这批肥料的重量,抽出 10 袋进行称重,每袋以 50 千克为标准,超出部分记为正,不足部分记为负,10 袋的重量分别如下:+5,﹣3,﹣8,+6,+4,+8,﹣2,﹣12,+8,+5
(1)按每袋 50 千克为标准,抽出的 10 袋肥料的重量超出或不足多少千克?
(2)若购进这批肥料共有 500 袋,问这批肥料的总重量约为多少?
(3)若按每袋 120 元购进,140 元卖出,则卖完这批肥料的总利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系xOy中的位置如图所示.
(1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是( )
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交AB于D,AE平分∠BAC交BC于E,连接DE,DF⊥BC于F,则∠EDC=_____°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知△ABC中,D为BC上一点,E为△ABC外部一点,DE交AC于一点O,AC=AE,AD=AB,∠BAC=∠DAE.
(1)求证:△ABC≌△ADE;
(2)若∠BAD=20°,求∠CDE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,△ABD、△BCE均为等边三角形,DE、AB交于点F,AF=3,则△ACE的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a,较长直角边为b,那么(a+b)2的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.
(1)随机抽取一张卡片,求抽到数字“2”的概率;
(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“1”且第二次抽到数字“2”的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com