精英家教网 > 初中数学 > 题目详情

【题目】如图,已知边长为4的菱形ABCD中,ACBCEF分别为ABAD边上的动点,满足BEAF,连接EFAC于点GCECF分别交BD与点MN,给出下列结论:①∠AFC=∠AGE;②EFBE+DF;③△ECF面积的最小值为3,④若AF2,则BMMNDN;⑤若AF1,则EF3FG;其中所有正确结论的序号是_____

【答案】①③④

【解析】

由“SAS”可证△BEC≌△AFC,再证△EFC是等边三角形,由外角的性质可证∠AFC=AGE;由点EAB上运动,可得BE+DFEF;由等边三角形的性质可得ECF面积的EC2,则当ECAB时,△ECF的最小值为3;由等边三角形的性质和菱形的性质可求MNBDBMDN,由平行线分线段成比例可求EG=3FG,即可求解.

∵四边形ABCD是菱形,

∴AB=BC=CD=AD=4,

∵AC=BC,

∴AB=BC=CD=AD=AC,

∴△ABC,△ACD是等边三角形,

∴∠ABC=∠BAC=∠ACB=∠DAC=60°,

∵AC=BC,∠ABC=∠DAC,AF=BE,

∴△BEC≌△AFC(SAS)

∴CF=CE,∠BCE=∠ACF,

∴∠ECF=∠BCA=60°,

∴△EFC是等边三角形,

∴∠EFC=60°,

∵∠AFC=∠AFE+∠EFC=60°+∠AFE,∠AGE=∠AFE+∠CAD=60°+∠AFE,

∴∠AFC=∠AGE,故①正确;

∵BE+DF=AF+DF=AD,EF=CF≤AC,

∴BE+DF≥EF(当点E与点B重合时,BE+DF=EF),

故②不正确;

∵△ECF是等边三角形,

∴△ECF面积的EC2

∴当EC⊥AB时,△ECF面积有最小值,

此时,EC=2,△ECF面积的最小值为3,故③正确;

如图,设AC与BD的交点为O,

若AF=2,则FD=BE=AE=2,

∴点E为AB中点,点F为AD中点,

∵四边形ABCD是菱形,

∴AC⊥BD,AO=CO,BO=DO,∠ABO=∠ABC=30°,

∴AO=AB=2,BO=AO=2

∴BD=4

∵△ABC是等边三角形,BE=AE=2,

∴CE⊥AB,且∠ABO=30°,

∴BE=EM=2,BM=2EM,

∴BM=

同理可得DN=

∴MN=BD﹣BM﹣DN=

∴BM=MN=DN,故④正确;

如图,过点E作EH∥AD,交AC于H,

∵AF=BE=1,

∴AE=3,

∵EH∥AD∥BC,

∴∠AEH=∠ABC=60°,∠AHE=∠ACB=60°,

∴△AEH是等边三角形,

∴EH=AE=3,

∵AD∥EH,

∴EG=3FG,故⑤错误,

故答案为:①③④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读题.

材料一若一个整数m能表示成a2-b2(a,b为整数)的形式,则称这个数为完美数”.例如,3=22-12,9=32-02,12=42-223,9,12都是完美数”;再如,M=x2+2xy=(x+y)2-y2,(x,y是整数),所以M也是完美数”.

材料二:任何一个正整数n都可以进行这样的分解:n=p×q(p、q是正整数,且p≤q).如果p×qn的所有这种分解中两因数之差的绝对值最小,我们就称p×qn的最佳分解,并且规定F(n)=.例如18=1×18=2×9=3×6,这三种分解中36的差的绝对值最小所以就有F(18)=.请解答下列问题:

(1)8______(填写不是)一个完美数,F(8)= ______.

(2)如果mn都是完美数”,试说明mn也是完美数”.

(3)若一个两位数n的十位数和个位数分别为x,y(1≤x≤9),n完美数x+y能够被8整除,求F(n)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,点P在优弧上.

(1)求出A,B两点的坐标;

(2)试确定经过A、B且以点P为顶点的抛物线解析式;

(3)在该抛物线上是否存在一点D,使线段OPCD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在RtABC中,ACB=90°,BE平分ABC,D是边AB上一点,以BD为直径的O经过点E,且交BC于点F.

(1)求证:AC是O的切线;

(2)若BF=6,O的半径为5,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.

观察图象可知:

①当x=﹣3或1时,y1=y2

②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.

有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.

某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将(2)、(3)、(4)补充完整:

(1)将不等式按条件进行转化:

当x=0时,原不等式不成立;

当x>0时,原不等式可以转化为x2+4x﹣1>

当x<0时,原不等式可以转化为x2+4x﹣1<

(2)构造函数,画出图象

设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.

双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)

(3)确定两个函数图象公共点的横坐标

观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为   

(4)借助图象,写出解集

结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为(  )

A. B. 2 C. 2 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).

(1)求抛物线的解析式及它的对称轴;

(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;

(3)在抛物线的对称轴上是否存在点Q,使ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.

(1)求一件A型、B型丝绸的进价分别为多少元?

(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.

①求m的取值范围.

②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2022个正方形(正方形ABCD看作第1个)的面积为( )

A. 52020 B. 52022 C. 52021 D. 52022

查看答案和解析>>

同步练习册答案