【题目】如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.
(1)若AB=4,求的长;(结果保留π)
(2)求证:四边形ABMC是菱形.
【答案】
(1)
解:∵OA=OB,E为AB的中点,
∴∠AOE=∠BOE,OE⊥AB,
∵OE⊥AB,E为OD中点,
∴OE=OD=OA,
∴在Rt△AOE中,∠OAB=30°,∠AOE=60°,∠AOB=120°,
设OA=x,则OE=x,AE=x,
∵AB=4,
∴AB=2AE=x=4,
解得:x=4,
则的长l==;
(2)
证明:由1得∠OAB=∠OBA=30°,∠BOM=∠COM=60°,∠AMB=30°,
∴∠BAM=∠BMA=30°,
∴AB=BM,
∵BM为圆O的切线,连接OB,如图所示,
∴OB⊥BM,
在△COM和△BOM中,
,
∴△COM≌△BOM(SAS),
∴CM=BM,∠CMO=∠BMO=30°,
∴CM=AB,∠CMO=∠MAB,
∴CM∥AB,
∴四边形ABMC为菱形.
【解析】(1)连接OB,由E为OD中点,得到OE等于OA的一半,在直角三角形AOE中,得出∠OAB=30°,进而求出∠AOE与∠AOB的度数,设OA=x,利用勾股定理求出x的值,确定出圆的半径,利用弧长公式即可求出的长;
(2)由第一问得到∠BAM=∠BMA,利用等角对等边得到AB=MB,利用SAS得到三角形OCM与三角形OBM全等,利用全等三角形对应边相等得到CM=BM,等量代换得到CM=AB,再利用全等三角形对应角相等及等量代换得到一对内错角相等,进而确定出CM与AB平行,利用一组对边平行且相等的四边形为平行四边形得到ABMC为平行四边形,最后由邻边相等的平行四边形为菱形即可得证.
【考点精析】关于本题考查的菱形的判定方法和切线的性质定理,需要了解任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】关于数据:25,26,23,27,26,23,20.下列说法正确的是( )
A.中位数是27
B.众数是23和26
C.极差是6
D.平均数是24.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 (填入正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.
(1)如图1,求⊙O的半径;
(2)如图1,若点E是BC的中点,连接PE,求PE的长度;
(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A1 , A2 , …,An均在直线y=x﹣1上,点B1 , B2 , …,Bn均在双曲线上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若a1=﹣1,则a2015= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自从2012年12月4日中央公布“八项规定”以来,我市某中学积极开展“厉行勤俭节约,反对铺张浪费”的活动.为此,校学生会在全校范围内随机抽取了若干名学生就某日晚饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.学生会根据统计结果绘制了如下统计表和统计图,根据所提供的信息回答下列问题:
选项 | 频数 | 频率 |
A | 30 | M |
B | n | 0.2 |
C | 5 | 0.1 |
D | 5 | 0.1 |
(1)这次被抽查的学生有多少人?
(2)求表中m,n的值,并补全条形统计图;
(3)该中学有学生2200名,请估计这餐晚饭有剩饭的学生人数,按平均每人剩10克米饭计算,这餐晚饭将浪费多少千克米饭?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BD平分∠ABF,且交AE于点D,
(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);
(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.
(1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);
(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com