精英家教网 > 初中数学 > 题目详情

【题目】已知:抛物线y=-+bx+c经过A(-1,0)、B(5,0)两点,顶点为P.

求:(1)求b,c的值;

(2)求△ABP的面积;

(3)若点C()和点D()在该抛物线上,则当时,请写出的大小关系.

【答案】(1)b=4,c=5;(2)27;(3)y1<y2.

【解析】

(1)利用交点式得到y=-(x+1)(x-5),然后展开即可得到bc的值;

(2)先把抛物线的解析式配成顶点式得到P点坐标为(2,9),然后根据三角形面积公式计算即可;

(3)由于抛物线的对称轴为直线x=2,开口向下,则根据二次函数的性质可确定y1y2的大小关系.

(1)把点A(-1, 0)、B(5,0)分别代入y=-+bx+c, ,

解得

(2)由(1)得抛物线解析式y=-+4x+5

y=-(x-2)2-9

P(2,9)

A(-1, 0)、B(5,0)

AB=6

SABF=

(3)∵抛物线开口向下

∴在对称轴直线x=2的左侧y随着x的增大而增大

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知A,B两点的坐标分别为(2,0),(0,10),MAOB外接圆⊙C上的一点,且∠AOM=30°,则点M的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用黑白棋子摆出下列一组图形,根据规律可知.

(1)在第n个图中,白棋共有   枚,黑棋共有   枚;

(2)在第几个图形中,白棋共有300枚;

(3)白棋的个数能否与黑棋的个数相等?若能,求出是第几个图形,若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是(  )

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2﹣4ax+3a.

(Ⅰ)求该二次函数的对称轴;

(Ⅱ)若该二次函数的图象开口向下,当1x4时,y的最大值是2,且当1x4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;

(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当tx1t+1,x25时,均满足y1y2,请结合图象,直接写出t的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣ 时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.

(1)如图1,若四边形ABCD是矩形,且DE⊥CF.证明:=

(2)如图2,若四边形ABCD是平行四边形,试探究:

当∠B与∠EGC满足什么关系时,使得=成立?并证明你的结论;

(3)如图3,若BA=BC= 3,DA=DC= 4,∠BAD= 90°,DE⊥CF.求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线最高点D到墙面OB的水平距离为6m时,隧道最高点D距离地面10m.

(1)求该抛物线的函数关系式;

(2)一辆货运汽车载一长方体集装箱后宽为4m,高为6m,如果隧道内设双向行车道,那么这辆货车能否安全通过?

(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

同步练习册答案