【题目】已知二次函数y=ax2﹣4ax+3a.
(Ⅰ)求该二次函数的对称轴;
(Ⅱ)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;
(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请结合图象,直接写出t的最大值.
【答案】(Ⅰ)对称轴x=2;(Ⅱ)△OPQ的面积为10;(Ⅲ)t的最大值为4.
【解析】分析:根据抛物线的对称轴公式直接写出即可.
抛物线的开口向下,对称轴在1≤x≤4的范围内,应该是在对称轴处取得最大值,即可求出顶点坐标,代入求出的值,分析二次函数在1≤x≤4的范围内的最小值,求出点 的面积可以用长方形的面积减去3个直角三角形的面积即可.
当 时,均满足抛物线开口向下,点P在点Q左边或重合时,满足条件,即可列出不等式,求解即可.
详解:(Ⅰ)对称轴x=﹣=2.
(Ⅱ)∵该二次函数的图象开口向下,且对称轴为直线x=2,
∴当x=2时,y取到在1≤x≤4上的最大值为2,即
∴
∴
∴
∵当1≤x≤2时,y随x的增大而增大,
∴当x=1时,y取到在1≤x≤2上的最小值0.
∵当2≤x≤4时,y随x的增大而减小,
∴当x=4时,y取到在2≤x≤4上的最小值﹣6.
∴当1≤x≤4时,y的最小值为﹣6,即
∴的面积为
(Ⅲ)∵当 时,均满足
∴当抛物线开口向下,点P在点Q左边或重合时,满足条件,
∴
∴
∴t的最大值为4.
科目:初中数学 来源: 题型:
【题目】在长方形中,,,现将长方形向右平移,再向下平移后到长方形的位置.
(1)如图,用的代数式表示长方形与长方形的重叠部分的面积,这时应满足怎样的条件?
(2)如图,用的代数式表示六边形的面积;
(3)当这两个长方形没有重叠部分时,第(2)小题的结论是否改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个由若干小正方形堆成的几何体,它从正面看和从左面看的图形如图1所示.
这个几何体可以是图2中甲,乙,丙中的______;
这个几何体最多由______个小正方体堆成,最少由______个小正方体堆成;
请在图3中用阴影部分画出符合最少情况时的一个从上面往下看得到的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险?请用你学过的知识加以解答.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的两条边、分别在轴和轴上,已知点 坐标为(4,–3).把矩形沿直线折叠,使点落在点处,直线与、、的交点分别为、、.
(1)线段 ;
(2)求点坐标及折痕的长;
(3)若点在轴上,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是圆O的切线;
(2)若A为EH的中点,求的值;
(3)若EA=EF=1,求圆O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com