精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形的两条边分别在轴和轴上,已知点 坐标为(4–3).把矩形沿直线折叠,使点落在点处,直线的交点分别为.

(1)线段

(2)求点坐标及折痕的长;

(3)若点轴上,在平面内是否存在点,使以为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;

【答案】1;(2;拆痕DE的长为 3)点Q坐标为

【解析】

1)根据B点的坐标即可求得AC的长度.

2)首先根据已知条件证明,再根据相似比例计算DFCD的长度

即可计算出D点的坐标,再证明,根据EF=DF,即可计算的DE的长度.

3)根据等腰三角形的性质,分类讨论第一种情况当时;第二种情况当时;第三种情况当时,分别计算即可.

解:(1

2,由折叠可得:

,.

∵四边形OABC是矩形,

∴拆痕DE的长为

3)由(2)可知,

若以PDEQ为顶点的四边形是菱形,则必为等腰三角形。

时,可知

此时PE为对角线,可得

时,可知,此时DP为对角线,可得

时,PC重合,QA重合,

综上所述,满足条件的点Q坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形中,点是正方形内两点,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:

1)在图1中,连接,且

①求证:互相平分;

②求证:

2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.

3)在图3中,当时,求之长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2﹣4ax+3a.

(Ⅰ)求该二次函数的对称轴;

(Ⅱ)若该二次函数的图象开口向下,当1x4时,y的最大值是2,且当1x4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;

(Ⅲ)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当tx1t+1,x25时,均满足y1y2,请结合图象,直接写出t的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小东设计的作平行四边形ABCD,使∠B=45°AB=2cm,BC=3cm”的作图过程.

1)作法:如图,①画∠B=45°

②在∠B的两边上分别截取BA=2cm,BC=3cm.

③以点A为圆心,BC长为半径画弧,以点为圆心,AB长为半径画弧,两弧相交于点D;则四边形ABCD为所求的平行四边形.

根据小东设计的作图过程,

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面的证明.

证明:∵______________

∴四边形ABCD为所求的平行四边形.(____________)(填推理的依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:

与标准质量的差值(单位:千克)

0

1

2.5

筐数

1

4

2

3

2

8

120筐白菜中,最重的一筐比最轻的一筐多重多少千克?

2)与标准重量比较,20筐白菜总计超过或不足多少千克?

3)若白菜每千克售价2.8元,则出售这20筐白菜可卖多少元?(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点Cx轴的正半轴上,直线ACy轴于点M,AB边交y轴于点H,连接BM.

(1)菱形ABCO的边长   

(2)求直线AC的解析式;

(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设PMB的面积为S(S≠0),点P的运动时间为t秒,

①当0<t<时,求St之间的函数关系式;

②在点P运动过程中,当S=3,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法

B. 4位同学的数学期末成绩分别为10095105110,则这四位同学数学期末成绩的中位数为100

C. 甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.510.62

D. 某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】服装店10月份以每套500元的进价购进一批羽绒服,当月以标价销售,销售额14000元,进入11月份搞促销活动,每件降价50元,这样销售额比10月份增加了5500元,售出的件数是10月份的1.5倍.

(1)求每件羽绒服的标价是多少元;

(2)进入12月份,该服装店决定把剩余的羽绒服按10月份标价的八折销售,结果全部卖掉,而且这批羽绒服总获利不少于12700元,问这批羽绒服至少购进多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=ax2+bx+c的图象开口向上,且经过点A(0,).

(1)若此函数的图象经过点(1,0)、(3,0),求此函数的表达式;

(2)若此函数的图象经过点B(2,﹣),且与x轴交于点C、D.

①填空:b=_____(用含α的代数式表示);

②当CD2的值最小时,求此函数的表达式.

查看答案和解析>>

同步练习册答案