精英家教网 > 初中数学 > 题目详情

【题目】已知一个长方体的长为1cm,宽为1cm,高为2cm,请求出:

(1)长方体有   条棱,   个面;

(2)长方体所有棱长的和;

(3)长方体的表面积.

【答案】(1)12,6;(2)16(cm);(3)长方体的表面积是10cm2

【解析】

1)根据长方体的性质可得出;

(2)长方体的棱长总和=4(长++高);
(3)长方体的表面积=2(长×+×+×高),把相关数字代入即可.

解:(1)长方体有12条棱,6个面;

故答案为:12,6;

2)(1+1+2×4,,

=4×4,

=16cm).

故长方体所有棱长的和是16cm;

3)(1×1+1×2+1×2×2,

=1+2+2×2,,

=5×2,

=10cm2).

故长方体的表面积是10cm2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.

(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:
①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=
其中正确的结论有( )

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程组:

(1)

(2)

(3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若ABC=25°,则DBE的度数为(  )

A. 50° B. 65° C. 45° D. 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直线AB上一点O为端点作射线 OC使BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图1,若直角三角板DOE的一边OD放在射线OBCOE= °;

(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置OE恰好平分AOC请说明OD所在射线是BOC的平分线

(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时若恰好COD= AOEBOD的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,然后解答后面的问题.

(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.

(2)性质探究:请完成凹四边形一个性质的证明.

已知:如图2,四边形ABCD是凹四边形.

求证:∠BCD=B+∠A+∠D.

(3)性质应用:

如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,AEC=102°,则∠B=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.

(1)求该抛物线的解析式;
(2)判断△BCM的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以点P,A,C为顶点的三角形与△BCM相似?若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 已知点A、点B是直线上的两点,AB =12厘米,点C在线段AB上,且AC=8厘米点P、点Q是直线上的两个动点,点P的速度为1厘米秒,点Q的速度为2厘米/秒PQ分别从点C、点B同时出发,在直线上运动,则经过 秒时线段PQ的长为5厘米

查看答案和解析>>

同步练习册答案