分析 (1)首先证明△ADF≌△CBE,根据全等三角形的性质可得AD=CB,∠DAC=∠ACB,进而可得证明AD∥CB,根据一组对边平行且等的四边形是平行四边形可得四边形ABCD是平行四边形;
(2)首先根据角平分线的性质可得∠DAC=∠BAC,进而可得出AB=BC,再根据一组邻边相等的平行四边形是菱形可得结论.
解答 证明:(1)∵DF∥BE,
∴∠DFA=∠CEB,![]()
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
在△ADF和△CBE中$\left\{\begin{array}{l}{AF=CE}\\{∠DFA=∠BEC}\\{DF=EB}\end{array}\right.$,
∴△ADF≌△CBE(SAS),
∴AD=CB,∠DAC=∠ACB,
∴AD∥CB,
∴四边形ABCD是平行四边形;
(2)∵AC平分∠BAD,
∴∠DAC=∠BAC,
∴∠BAC=∠ACB,
∴AB=BC,
∴?ABCD为菱形.
点评 此题主要考查了平行四边形的判定和菱形的判定,关键是掌握据一组对边平行且等的四边形是平行四边形,一组邻边相等的平行四边形是菱形.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{24}{5}$ | B. | $\frac{28}{5}$ | C. | $\frac{36}{5}$ | D. | $\frac{48}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com