精英家教网 > 初中数学 > 题目详情

【题目】如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动

过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为( )

A.B.C.D.

【答案】B

【解析】

解析动点P的运动过程,采用定量解析手段,求出St的函数关系式,根据关系式可以得出结论:

不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:

1)当点PA→B段运动时,PB=1t0≤t1);

2)当点PB→A段运动时,PB=t11≤t≤2).

综上所述,,整个运动过程中,St的函数关系式为:0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】程序框图的算法思路源于我国古代数学名著《九章算术》,如图所示的程序框图,当输入x的值是17时,根据程序,第一次计算输出的结果是10,第二次计算输出的结果是5,……,这样下去第2019次计算输出的结果是(

A.-2B.-1C.-8D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.将绕点逆时针旋转一定角度后得到,其中点的对应点落在边上,则图中阴影部分的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】201912月以来,湖北省武汉市部分医院陆续发现不明原因肺炎病例,现已证实该肺炎为一种新型冠状病毒感染的肺炎,其传染性较强.为了有效地避免交叉感染,需要采取以下防护措施:①戴口罩;②勤洗手;③少出门;④重隔离;⑤捂口鼻;⑥谨慎吃.某公司为了解员工对防护措施的了解程度(包括不了解、了解很少、基本了解和很了解),通过网上问卷调查的方式进行了随机抽样调查(每名员工必须且只能选择一项),并将调查结果绘制成如下两幅统计图.

请你根据上面的信息,解答下列问题

1)本次共调查了_______名员工,条形统计图中________

2)若该公司共有员工1000名,请你估计不了解防护措施的人数;

3)在调查中,发现有4名员工对防护措施很了解,其中有3名男员工、1名女员工.若准备从他们中随机抽取2名,让其在公司群内普及防护措施,求恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,沿同一条道路匀速行驶.设行驶时间为t小时,两车之间的距离为s千米,图中折线ABCD表示st之间的函数关系.

1)求快车速度.

2)当快车到达乙地时,慢车还要多少时间才能到达甲地.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°,BAC的平分线交BC于点D,DEAD,交AB于点E,AE为O的直径

(1)判断BC与O的位置关系,并证明你的结论;

(2)求证:ABD∽△DBE;

(3)若cosB=,AE=4,求CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数的图象相交于点,反比例函数的图象经过点.

1)求反比例函数的表达式;

2)设一次函数 的图象与反比例函数 的图象的另一个交点为,连接,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴交于点,与轴交于点,抛物线的顶点为,其对称轴与线段交于点,垂直于轴的动直线分别交抛物线和线段于点和点,动直线在抛物线的对称轴的右侧(不含对称轴)沿轴正方向移动到点.

1)求出二次函数所在直线的表达式;

2)在动直线移动的过程中,试求使四边形为平行四边形的点的坐标;

3)连接,在动直线移动的过程中,抛物线上是否存在点,使得以点为顶点的三角形与相似,如果存在,求出点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某学校七年级4个班共180人的体质健康情况,从各班分别抽取同样数量的男生和女生组成一个样本,如图是根据样本绘制的条形图和扇形图.

1)本次抽查的样本容量是______

2)请补全条形图和扇形图中的百分数;

3)请你估计全校七年级共有多少人优秀.

查看答案和解析>>

同步练习册答案