精英家教网 > 初中数学 > 题目详情
已知:如图,在?ABCD中,∠BAD,∠ADC的平分线AE、DF分别与线段BC相交于点E、F,AE与DF相交于点G.
(1)求证:AE⊥DF;
(2)若AD=10,AB=6,求EF的长.
考点:平行四边形的性质
专题:
分析:(1)根据平行四边形的性质和平行线的性质推出∠ADC+∠DAB=180°,根据角平分线得到∠ADF+∠DAE=
1
2
(∠ADC+∠DAB)=90°,即可求出结论;
(2)据平行四边形的性质和平行线的性质推出DC=FC,AB=EB,求出FE的长.
解答:(1)证明:在?ABCD中AB∥CD,
∴∠ADC+∠DAB=180°.
∵DF、AE分别是∠ADC、∠DAB的平分线,
∴∠ADF=∠CDF=
1
2
∠ADC,∠DAE=∠BAE=
1
2
∠DAB,
∴∠ADF+∠DAE=
1
2
(∠ADC+∠DAB)=90°,
∴∠AGD=90°,
∴AE⊥DF;
(2)?ABCD中AD∥BC,
∴∠ADF=∠CFD,∠DAE=∠BEA.
∴∠CDF=∠CFD,∠BAE=∠BEA.
∴DC=FC,AB=EB.
在?ABCD中,AD=BC=10,AB=DC=6,
∴CF=BE=6,BF=BC-CF=10-6=4.
∴FE=BE-BF=6-4=2,
点评:本题主要考查对平行四边形的性质,三角形的内角和定理,平行线的性质,角平分线的定义,垂线的定义等知识点的理解和掌握,熟练地运用这些性质进行证明是解此题的关键,题型较好,综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

数据a,4,2,5,3的平均数为b,且a和b是方程x2-4x+3=0的两个根,则这组数据的标准差是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列运算中,正确的是(  )
A、x2+x2=x4
B、x6÷x2=x3
C、x2•x4=x6
D、(3x22=6x4

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方程叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2
例如:二次三项式x2-2x+4运用配方法进行变形,可得:
x2-2x+4=x2-2x
+1+3
.
=x2-2•x•
1
.
+
12
.
+3=(x-1)2+3
x2-2x+4=x2
-4x
.
+4
+2x
.
=x2-
2•x•2
.
+22+2x=(x-2)2+2x
x2-2x+4=
1
4
x2
.
-2x+4
+
3
4
x2
.
=(
1
2
x
.
)2-2•
1
2
x
.
•2+22+
3
4
x2=(
1
2
x-2)2+
3
4
x2

因此(x-1)2
+3
.
(x-2)2
+2x
.
(
1
2
x-2)2
+
3
4
x2
.
是x2-2x+4的三种不同形式的配方式(即“余项”分别是常数项、一次项、二次项--见横线上的部分).
(1)比照上面的示例,写出x2+12x+16的三种不同形式的配方式;
(2)将a2+4ab+b2配方(至少两种形式);
(3)运用配方法解决问题:已知a2-4ab+5b2+c2-6b-2c+10=0,求a+b+c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围;
(3)当
1
2
≤x≤2时,求y的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)计算:|
3
-2|-2-1+sin60°-(2013-π)0
(2)先化简,再求值:(1-
1
x-1
)÷
x
x2-1
,其中x=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.
(1)当PQ∥AD时,求x的值;
(2)若线段PQ的垂直平分线与BC边相交于点M,设BM=y,求y关于x的函数关系式;
(3)若线段PQ的垂直平分线始终与BC边相交,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

龙岩市某中学2013届九年级(1)班学生为四川雅安灾区人民开展募捐活动,募捐活动共收得募捐款2200元.班委会决定拿出不少于850元但不超过900元的募捐款直接汇给灾区红十字会,其余募捐款直接用于为灾区某校九年级(1)班50名同学每人购买一个文具盒或一个书包,并邮寄给他们,假定邮费共计30元;已知每个书包的单价比每个文具盒多12元,用176元恰好可以买到4个文具盒和3个书包.
(1)求每个文具盒和每个书包的价格分别为多少元;
(2)有几种购买文具盒和书包的方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值
x2-8x+16
x2+2x
÷(-
12
x+2
-2+x)-
1
x+4
,其中x为不等式组
x-2<0
5x+1>2(x-1)
的整数解.

查看答案和解析>>

同步练习册答案