【题目】甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:
(1)甲车的速度是 千米/时,乙车的速度是 千米/时;
(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.
【答案】(1)105,60;(2)y=;(3)
时,
时或
时.
【解析】
(1)根据题意和函数图象中的数据可以得到甲乙两车的速度;
(2)根据题意和函数图象中的数据可以求得甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)根据题意可知甲乙两车相距90千米分两种情况,从而可以解答本题.
(1)由图可得,
甲车的速度为:(210×2)÷4=420÷4=105千米/时,
乙车的速度为:60千米/时,
故答案为:105,60;
(2)由图可知,点M的坐标为(2,210),
当0≤x≤2时,设y=k1x,
∵M(2,210)在该函数图象上,
2k1=210,
解得,k1=105,
∴y=105x(0≤x≤2);
当2<x≤4时,设y=k2x+b,
∵M(2,210)和点N(4,0)在该函数图象上,
∴,得
,
∴y=﹣105x+420(2<x≤4),
综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为:y=;
(3)设甲车出发a小时时两车相距90千米,
当甲从A地到C地时,
105a+60(a+1)+90=420,
解得,a=,
当甲从C地返回A地时,
(210﹣60×3)+(105﹣60)×(a﹣2)=90,
解得,a=,
当甲到达A地后,
420﹣60(a+1)=90,
解得,a=,
答:甲车出发时,
时或
时,两车相距90千米.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=120°,将△ABC绕点A顺时针旋转一定角度(小于360°)得到△B′AC′.
(1)若点B′落在线段AC上,在图中画出△B′AC′,并直接写出当AC=4时,CC′的值;
(2)若∠ACB=20°,旋转后,B′C′⊥AC,请直接写出旋转角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(,0),AB⊥
轴,且AB=10,点C(0,b),
,b满足
.点P(t,0)是线段AO上一点(不包含A,O)
(1)当t=5时,求PB:PC的值;
(2)当PC+PB最小时,求t的值;
(3)请根据以上的启发,解决如下问题:正数m,n满足m+n=10,且正数=
,则正数
的最小值=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在底面是正三角形的三棱柱中,边AB,A'B'垂直于投影面P且AB,A'B'上的高所在截面平行于投影面,若已知CD的投影长为2 cm,CC'的投影长为6 cm.
(1)画出三棱柱在投影面P上的正投影;
(2)求出三棱柱的表面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:
(1)此次共调查了多少人?
(2)求文学社团在扇形统计图中所占圆心角的度数;
(3)请将条形统计图补充完整;
(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB于D,且∠COD=60°,E为弧BC上一动点(不与点B、C重合),过E分别作于EF⊥AB于F,EG⊥OC于G.现给出以下四个命题:
①∠GEF=60°;②CD=GF;③△GEF一定为等腰三角形;④E在弧BC上运动时,存在某个时刻使得△GEF为等边三角形.
其中正确的命题是_____.(写出所有正确命题的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AD为斜边BC上的中线,AE∥BC,CE∥AD,EC的垂直平分线FG交AC点G,连接DG,若∠ADG=24°,则∠B的度数为_____度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,B、C两点的坐标分别为B(0,3)和C(0,﹣),点A在x轴正半轴上,且满足∠BAO=30°.
(1)过点C作CE⊥AB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将△OFG沿FG翻折使点O落在平面内的点O′处,连接O′C,求线段OF的长以及线段O′C的最小值;
(2)如图2,点D的坐标为D(﹣1,0),将△BDC绕点B顺时针旋转,使得BC⊥AB于点B,将旋转后的△BDC沿直线AB平移,平移中的△BDC记为△B′D′C′,设直线B′C′与x轴交于点M,N为平面内任意一点,当以B′、D′、M、N为顶点的四边形是菱形时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与轴交于
点.
(1)求该抛物线的解析式;
(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标;
(3)作直线BC,若点Q是直线BC下方抛物线上的一动点,三角形QBC面积是否有最大值,若有,请求出此时Q点的坐标;若没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com