精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点A(,0),AB,AB=10,C0b,,b满足.Pt,0)是线段AO上一点(不包含A,O

1)当t=5时,求PBPC的值;

2)当PC+PB最小时,求t的值;

3)请根据以上的启发,解决如下问题:正数m,n满足m+n=10,且正数=,则正数的最小值=________.

【答案】1的值为;(2)当最小时,t的值为15;(3

【解析】

1)先根据二次根式的被开方数的非负性求出ab的值,从而可得OAOC的长,再利用勾股定理分别求出PBPC的长,从而可得出答案;

2)如图(见解析),作点B关于x轴的对称点,从而可得的长,再根据两点之间线段最短确认最小时点P的位置,然后根据等腰直角三角形的性质求解即可得;

3)先根据题(1)得出的式子,可发现与所求的的形式完全一样,因此,参照题(2)的方法,画出图形,利用几何方法求解即可(与题(2)的思路完全相同).

,解得

代入得,

1)当时,则

的值为

2)如图1,作点B关于x轴的对称点,过点轴于点D,连接x轴于点

由轴对称的性质得:

由两点之间线段最短得:当点P与点重合时,最小,最小值为

是等腰直角三角形,

是等腰直角三角形,

故当最小时,t的值为15

3)由(1)知,

因此,对于可参照(2)的方法,画出如图2,其中,点B与点关于x轴对称,轴,

由(2)可知,的最小值为

的最小值为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y= (m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.

(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACAB的垂直平分线MNAC于点D,交AB于点E

1)若∠A40°,求∠DBC的度数;

2)若AE6,△CBD的周长为20,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年的随机抽取了部分学生的鞋号,绘制了统计图A和图B,请根据相关信息,解答下列问题:

1)本次随机抽样的学生数是多少?A值是多少?

2)本次调查获取的样本数据的众数和中位数各是多少?

3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有( )

(1)CEF=32°(2)AEC=116°(3)BGE=64°(4)BFD=116°.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图,已知ABCD,∠1=∠2,求证:∠3=∠4.

解法展示:证明:延长BE交直线CD于点M,如图所示.

ABCD,∴∠1=∠BMC(根据1).

∵∠1=∠2,∴∠2=∠BMC(根据2).

BECF(根据3).

∴∠3=∠4(根据4).

反思交流:(1)解法展示中的根据1是______________,根据2是______________,根据3是_____________,根据4是____________.

2)上述命题中,条件记为:①ABCD,②∠1=∠2,结论记为:③∠3=∠4.若把其中的一个条件和结论对调,得到一个新命题,写出这个命题(用序号表示即可),判断新命题的真假,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1 , 交x轴正半轴于点O2 , 以O2为圆心,O2O为半径画圆,交直线l于点P2 , 交x轴正半轴于点O3 , 以O3为圆心,O3O为半径画圆,交直线l于点P3 , 交x轴正半轴于点O4;…按此做法进行下去,其中 的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求,解答下列问题.

1)解方程组:

2)解下列方程组,只写出最后结果即可:

3)以上每个方程组的解中,x值与y值有怎样的大小关系?

4)观察以上每个方程组的外形特征,请你构造一个具有此特征的方程组,并用(3)中的结论快速求出其解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为正方形ABCD对角线AC上一动点,EF⊥AC且交AD于E,交CD的延长线于点G,连接CE和AG.
(1)求证:△ADG≌△CDE;
(2)当CE平分∠ACD时,求tan∠AGD.

查看答案和解析>>

同步练习册答案