【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论中,正确结论的有( )个.
①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
试题二次函数y=ax2+bx+c(a≠0)的图象如图所示,从图形来看二次函数与X轴有两个交点,那么方程有两个不相等的实数根,所以,即2-4ac>0,所以①正确;从图象来看,二次函数的图象开口向上,所以a>0,对称轴在y轴的右边,所以,解得b<0;二次函数y=ax2+bx+c与y轴的交点在其负半轴,那么,即c<0,所以abc>0,所以②正确;从图象来看,二次函数与X轴有两个交点,一个交点在-2、-1之间,即在-2这点二次函数的函数值大于0,所以,即,因为二次函数y=ax2+bx+c(a≠0)的对称轴为-1,即,那么2a=-b,所以-2b=4a,所以,因此③8a+c>0正确;因为二次函数y=ax2+bx+c(a≠0)的对称轴为-1,-2点关于对称轴x=-1的对称点是3,所以二次函数在-3点的函数值也大于0,所以9a+3b+c<0,所以全部正确
科目:初中数学 来源: 题型:
【题目】某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD是△ABC的中线, DE⊥AB于E, DF⊥AC于F, 且BE=CF, 求证:(1)AD是∠BAC的平分线;(2)AB=AC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(),在四边形中,,,,,分别是,上的点,且.探究图中线段,,之间的数量关系.小王同学探究此问题的方法是,延长到点,使,连接,先证明≌,再证明≌,可得出结论,他的结论应该是__________.
如图(),若在四边形中,,,,分别是,上的点,且,上述结论是否仍然成立,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过两点,与x轴交于另一点B.点P是抛物线上的动点。
(1)求抛物线的解析式;
(2)是否存在点P,使得△BCP是以BC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)当P运动到第一象限时,过P作直线PM平行y轴,交直线BC于点M。
①求线段PM长度的最大值
②D为平面内任意一点,当线段PM最大时,是否存在以C、P、M、D为顶点的平行四边形。若存在,直接写出所有符合条件的点D坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁合作生产一批零件.已知甲生产零件的数量是乙生产零件的数量的,乙生产零件的数量是丙生产零件的数量的倍,丁比甲多生产了个零件,设丙生产零件个.
(1)则乙生产零件 个,丁生产零件 个;
(2)若乙生产的零件数量比丁多,用含的代数式表示出乙比丁多生产零件的个数;
(3)若乙和丁生产的零件数量一样多,则这批零件共有多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于_________________;
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法① __________________.方法② _____________________;
(3)观察图②,你能写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系吗?
答:________________________ .
(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a-b)2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC,垂足为D,AD=CD,点E在AD上,DE=BD,M、N分别是AB、CE的中点.
(1)求证:△ADB≌△CDE;
(2)求∠MDN的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题提出)
学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
(初步思考)
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
(深入探究)
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)
(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ,则△ABC≌△DEF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com