【题目】二次函数y=ax +bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①抛物线与x轴的另一个交点是(5,0);②4a+c>2b;③4a+b=0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
【答案】B
【解析】①∵二次函数y=ax2+bx+c(a≠0)与x轴的一个交点为(-1,0)且对称轴为直线x=2,
∴另一个交点坐标为(5,0),故①正确;②∵二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2, ∴当x=-2时,y=4a-2b+c<0, ∴4a+c<2b,故②错误;③∵对称轴为=- , ∴ =2, ∴4a+b=0,故③正确;④当x<2时, y的值随x值的增大而增大, 当x>2时, y的值随x值的增大而减小,故④错误.
故答案为:B.
根据抛物线的对称性,知道次函数y=ax2+bx+c(a≠0)与x轴的一个交点为(-1,0)且对称轴为直线x=2,从而得出其与x轴的另一个交点坐标为(5,0) ;抛物线当x=-2时,其对应的函数图像在x轴的下方,即y=4a-2b+c<0, 故4a+c<2b ;根据抛物线的对称轴公式得出方程就可得出4a+b=0 ;利用抛物线的开口方向,及顶点横坐标知 ;当x<2时, y的值随x值的增大而增大, 当x>2时, y的值随x值的增大而减小 ;从而就可以对几个答案一一判断。
科目:初中数学 来源: 题型:
【题目】已知∠MON=51°,点P在∠MON的内部,点D是边ON上任意一点,点C是边OM上任意一点,连接PD、PC,当△PCD的周长最小时,∠CPD的度数为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,两块相同的三角板完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′BC′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“每天在校体育活动时间”的问题随机抽样调查了321名初中学生.根据调查结果将学生每天在校体育活动时间t(小时)分成,,,四组,并绘制了统计图(部分).
组:组:组:组:
请根据上述信息解答下列问题:
(1)组的人数是 ;
(2)本次调查数据的中位数落在 组内;
(3)若该市约有12840名初中学生,请你估算其中达到国家规定体育活动时间的人数大约有多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:
(1)两次取的小球的标号相同
(2)两次取的小球的标号的和等于4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论是___________________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)△ABC与△A′B′C′在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标:A′ ; B′ ;C′ ;
(2)说明△A′B′C′由△ABC经过怎样的平移得到? .
(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为 ;
(4)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com