分析 (1)利用配方法得到(x-1)2=4,然后利用直接开平方法解方程;
(2)先计算判别式的值,然后利用求根公式解方程;
(3)先变形得到4x(2x-3)+(2x-3)=0,然后利用因式分解法解方程;
(4)先把方程化为一般式,然后利用因式分解法解方程.
解答 解:(1)x2+2x+1=4,
(x-1)2=4,
x-1=±2,
所以x1=1,x2=-3;
(2)△=52-4×2×(-1)=33,
x=$\frac{-5±\sqrt{33}}{2×2}$,
所以x1=$\frac{-5+\sqrt{33}}{4}$,x2=$\frac{-5-\sqrt{33}}{4}$;
(3)4x(2x-3)+(2x-3)=0,
(2x-3)(4x+1)=0,
所以x1=$\frac{3}{2}$,x2=-$\frac{1}{4}$;
(4)x2-2x-15=0,
(x-5)(x+3)=0,
所以x1=5,x2=-3.
点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法和配方法解一元二次方程.
科目:初中数学 来源: 题型:选择题
| A. | b是a、c的比例中项,且a:b=7:3,则b:c=7:3 | |
| B. | 正三角形、菱形、矩形中,对称轴最多的是菱形 | |
| C. | 如果点C是线段的黄金分割点,那么AC=0.618AB | |
| D. | 相似图形一定是位似图形 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{5}{12}$ | D. | $\frac{7}{12}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com