【题目】如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2).动点D以每秒1个单位的速度
从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.
①求S关于t的函数关系式;
②若一抛物线y=x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可).
【答案】(1)30o;(2) ;(3)
【解析】试题分析:(1)求∠ABC的度数即求∠BAx的度数,过B作BM⊥x轴于M,则AM=2,BM=2,由此可得出∠BAM即∠ABC的度数.
(2)当AB∥FD时,∠CFD=∠B=30°,可在直角三角形CDF中,用CD的长表示出CF,同理可在直角三角形FEB中,用BE的长表示出BF,然后可根据CF+BF=BC来求出t的值.
(3)①连接DE,根据D、E的速度可知AE=2OD,而AE=2EG,因此OD∥=EG,即四边形ODEG是矩形,因此DE∥x轴,那么四边形AEFD的面积可分成三角形ADE和三角形EFD两部分来求出.两三角形都以DE为底,两三角形高的和正好是OC的长,因此四边形ADEF的面积就等于 DEOC,关键是求出DE的长.如果过A作DE的垂线不难得出DE=OA+AEsin60°,由此可得出S,t的函数关系式.
②已知了S的取值范围可根据①的函数关系式求出t的取值范围.在①题已经求得了E点坐标,将其代入抛物线的解析式中,用m表示出t的值,然后根据t的取值范围即可求出m的取值范围.
试题解析:
(1)过点B作BM⊥x轴于点M
∵C(0,2),B( )
∴BC∥OA
∴∠ABC=∠BAM
∵BM=2,AM=
∴tan∠BAM=
∴∠ABC=∠BAM=30°.
(2)∵AB∥DF
∴∠CFD=∠CBA=30°
在Rt△DCF中,CD=2-t,∠CFD=30°,
∴CF=(2-t)
∴AB=4,
∴BE=4-2t,∠FBE=30°,
∴BF=
∴
∴t=
(3)①连接DE,过点E作EG⊥x轴于点G,
则EG=t,OG=t+
∴E(t+,t)
∴DE∥x轴
S=S△DEF+S△DEA= DE×CD+DE×OD
=t+
②当S<时,
由①可知,S=t+
∴t+<
∴t<1,
∵t>0,
∴0<t<1,
∵y=-x2+mx,点E(t+,t)
当t=0时,E(,0)
∴m=
当t=1时,E(,1)
∴m=
∴
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A在y轴正半轴上,点B与点C都在x轴上,且点B在点C的左侧,满足BC=OA.若﹣3am﹣1b2与anb2n﹣2是同类项且OA=m,OB=n,求出m和n的值以及点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,不能判定两个直角三角形全等的是( )
A.一个锐角和斜边对应相等
B.两条直角边对应相等
C.两个锐角对应相等
D.斜边和一条直角边对应相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若点A(2,﹣2),B(﹣1,﹣2),则直线AB与x轴和y轴的位置关系分别是( )
A.相交,相交
B.平行,平行
C.平行,垂直相交
D.垂直相交,平行
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的周长、面积分别相等;④面积相等的两个三角形全等,其中正确的说法为( )
A. ①③④ B. ②③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=﹣ x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的图象相交于点P.
(1)求△PAB的面积;
(2)求证:∠APB=90°;
(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP的面积关于x的函数关系式,并写出相应x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com