【题目】如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在答题卡指定位置画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而(填“增大”或“减小”).
【答案】
(1)
解:设直线AB的函数 解析式为y=kx+b(k、b为常数且k≠0)
依题意,得A(1,0),B(0,2)
∴
解得
∴直线AB的函数解析式为y=﹣2x+2
当0≤y≤2时,自变量x的取值范围是0≤x≤1
(2)
解:线段BC即为所求.
故答案为:增大
【解析】(1)根据一次函数图象知A(1,0),B(0,2),然后将其代入一次函数的解析式,利用待定系数法求该函数的解析式;(2)根据旋转的性质,在答题卡中画出线段BC,然后根据直线BC的单调性填空.
【考点精析】关于本题考查的确定一次函数的表达式,需要了解确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图所示,1925年数学家莫伦发现的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形.若标注①、②的正方形边长分别为5和6,请你直接写出以下数据:
(1)第6个正方形的边长= ;
(2)第8个正方形的边长= ;
(3)整个长方形的面积= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于O点,且BE=BF,∠BEF=2∠BAC。
(1)求证:OE=OF;
(2)若BC=,求AB的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,在Rt ΔABC中,∠ABC=900, AB=BC=2.
(1)用尺规作∠A的平分线AD.
(2)角平分线AD交BC于点D,求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读求绝对值不等式|x|<3和|x|>3的解集的过程:
因为|x|<3,从如图1所示的数轴上看:大于-3而小于3的数的绝对值是小于3的,所以|x|<3的解集是-3<x<3;
因为|x|>3,从如图2所示的数轴上看:小大于-3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<-3或x>3.
解答下面的问题:
(1)不等式|x|<a(a>0)的解集为______;不等式|x|>a(a>0)的解集为______.
(2)解不等式|x-5|<3;
(3)解不等式|x-3|>5.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一组数据7,2,5,4,2的方差为a,若再增加一个数据4,这6个数据的方差为b,则a与b的大小关系是( )
A. a>b B. a=b C. a<b D. 以上都有可能
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米。一只小虫在长方体表面从A爬到B的最短路程是__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数(k>0)的图象经过BC边的中点D(3,1).
(1)求这个反比例函数的表达式;
(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E在这个函数的图象上.
①求OF的长;
②连接AF,BE,证明四边形ABEF是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图所示,点为矩形边的中点,在矩形的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员从点出发,沿着的路线匀速行进,到达点.设运动员的运动时间为,到监测点的距离为.现有与的函数关系的图象大致如图所示,则这一信息的来源是( ).
A. 监测点 B. 监测点 C. 监测点 D. 监测点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com