【题目】某商场为做好“家电下乡”的惠民服务,决定从厂家购进甲、乙、丙三种不同型号的电视机108台,其中甲种电视机的台数是丙种的4倍,购进三种电视机的总金额不超过147 000元,已知甲、乙、丙三种型号的电视机的出厂价格分别为1 000元/台,1 500元/台,2 000元/台.
(1)求该商场至少购买丙种电视机多少台?
(2)若要求甲种电视机的台数不超过乙种电视机的台数,问有哪些购买方案?
【答案】(1)至少购买丙种电视机10台;
(2)方案一:购进甲、乙、丙三种不同型号的电视机分别为40台、58台、10台;
方案二:购进甲、乙、丙三种不同型号的电视机分别为44台、53台、11台;
方案三:购进甲、乙、丙三种不同型号的电视机分别为48台、48台、12台.
【解析】(满分8分)解:(1)设购买丙种电视机台,则购买甲种电视机台,购买乙种电视机 台.····························1分
根据题意列不等式: ,····2分
解这个不等式得,因此至少购买丙种电视机10台.·················3分
(2)根据题意得: ,解得.······························4分
又∵是整数,由(1)得: ,∴=10,11,12,因此有三种方案. 5分
方案一:购进甲、乙、丙三种不同型号的电视机分别为40台、58台、10台;····6分
方案二:购进甲、乙、丙三种不同型号的电视机分别为44台、53台、11台;····7分
方案三:购进甲、乙、丙三种不同型号的电视机分别为48台、48台、12台.····8分
科目:初中数学 来源: 题型:
【题目】如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(≈1.7,结果精确到个位).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上,若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店需要购进甲、乙两种商品共180件,其进价和售价如表:(注:获利=售价﹣进价)
甲 | 乙 | |
进价(元/件) | 14 | 35 |
售价(元/件) | 20 | 43 |
(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(4,0).点P是直线y= x+3在第一象限内的点,过P作PMx轴于点M,O是原点.
(1)设点P的坐标为(x, y),试用它的纵坐标y表示△OPA的面积S;
(2)S与y是怎样的函数关系?它的自变量y的取值范围是什么?
(3)如果用P的坐标表示△OPA的面积S,S与x是怎样的函数关系?它的自变量的取值范围是什么?
(4)在直线y= x+3上求一点Q,使△QOA是以OA为底的等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;
(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;
(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.
(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE.
(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45,原题设其它条件不变,求证:△AEF≌△BCF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com