【题目】如图,二次函数y=2x2+m的图像经过点(0,-4),正方形ABCD的顶点C,D在x轴上,点A,B恰好在二次函数的图像上,则图中阴影部分的面积之和为_______.
【答案】8
【解析】
先把函数图象经过的点(0,-4)代入解析式求出m的值,再根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.
∵二次函数y=2x2+m的图象经过点(0,-4),
∴m=-4,
∵四边形ABCD为正方形,
又∵抛物线和正方形都是轴对称图形,且y轴为它们的公共对称轴,
∴OD=OC,S阴影=S矩形BCOE,
设点B的坐标为(n,2n)(n>0),
∵点B在二次函数y=2x2-4的图象上,
∴2n=2n2-4,
解得,n1=2,n2=-1(舍负),
∴点B的坐标为(2,4),
∴S阴影=S矩形BCOE=2×4=8.
故答案为:8.
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.
(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;
(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA的度数;若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,等边△ABC的边长为8,D为AC上的一个动点,延长AB到点E,使BE=CD,连接DE交BC于点P
(1)求证:DP=EP;
(2)若D为AC的中点,求BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点、、都在方格纸的格点上,方格纸中每个小正方形的边长都是1.
(1)画关于直线对称的;
(2)在直线上找一点,使最小;(要求在直线上标出点的位置)
(3)连接、,计算四边形PABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】类比转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
(1)尝试探究
如图(1),在正方形ABCD中,对角线AC、BD相交于点O,点E是BC边上一点,AE与BD交于点G,过点E作EF⊥AE交AC于点F,若=2,则的值是 ;
(2)拓展迁移
如图(2),在矩形ABCD中,过点B作BH⊥AC于点O,交AD相于点H,点E是BC边上一点,AE与BH相交于点G,过点E作EF⊥AE交AC于点F.
①若∠BAE=∠ACB,sin∠EAF=,求tan∠ACB;
②若,=b(a>0,b>0),求的值(用含a,b的代数式表示).
图(1) 图(2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,是某公园的平面示意图,分别是该公园的四个入口,两条主干道交于点,经测量,,,请你帮助公园的管理人员解决以下问题:
(1)公园的面积为 ;
(2)如图②,公园管理人员在参观了武汉东湖绿道后,为提升游客游览的体验感,准备修建三条绿道,其中点在上,点在上,且(点与点不重合),并计划在与两块绿地所在区域种植郁金香,求种植郁金香区域的面积;
(3)若修建(2)中的绿道每千米费用为10万元,请你画出该公园修建这三条绿道投入资金最小值时的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请将下列事件发生的概率标在图中:
(1)从高处抛出的物体必落到地面;
(2)从装有个红球的袋子中任取一个,取出的球是白球;
(3)月亮绕着地球转;
(4)从装有个红球、个白球的口袋中任取一个球,恰好是红球(这些球除颜色外完全相同);
(5)三名选手抽签决定比赛顺序(有三个签,分别写有,,),抽到写有的签.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com