【题目】如图,正方形ABCD中,AB=4,E,F分别是边AB,AD上的动点,AE=DF,连接DE,CF交于点P,过点P作PK∥BC,且PK=2,若∠CBK的度数最大时,则BK长为_____.
【答案】6.
【解析】
根据全等三角形的性质得到∠ADE=∠DCF,求得∠CPD=90°,得到点P在以CD为直径的半圆上运动,取CD的中点O,过O作OM⊥CD,且点M在CD的右侧,MO=2,连接OP,KM,推出四边形POMK是菱形,于是得到点K在以M为圆心,半径=2的半圆上运动,当BK与⊙M相切时,∠CBK最大,根据勾股定理即可得到结论.
解:∵正方形ABCD中,AD=CD,∠A=∠CDA=90°,
∵AE=DF,
∴△ADE≌△DCF(SAS),
∴∠ADE=∠DCF,
∵∠ADE+∠CDE=90°,
∴∠DCF+∠CDE=90°,
∴∠CPD=90°,
∴点P在以CD为直径的半圆上运动,
取CD的中点O,过O作OM⊥CD,且点M在CD的右侧,MO=2,
连接OP,KM,
∵PK∥BC,BC⊥CD,
∴PK⊥CD,
∴PK∥OM,PK=OM=2,
∴四边形POMK是平行四边形,
∵CD=AB=4,
∴OP=CD=2,
∴OP=OM,
∴四边形POMK是菱形,
∴点K在以M为圆心,半径=2的半圆上运动,
当BK与⊙M相切时,∠CBK最大,
∴∠BKM=90°,
∵BM==2,
∴BK==6,
故答案为:6.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数y=(k≠0,x>0)的图像上,点D的坐标为(-4,1),则K的值为( )
A.B.C.4D.-4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点在的直径延长线上,点为上,过作,与的延长线相交于,为的切线,,.
(1)求证:;
(2)求的长;
(3)若的平分线与交于点,为的内心,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某化肥厂2019年生产氮肥4000吨,现准备通过改进技术提升生产效率,计划到2021年生产氮肥4840吨.现技术攻关小组按要求给出甲、乙两种技术改进方案,其中运用甲方案能使每年产量增长的百分率相同,运用乙方案能使每年增长的产量相同.问运用哪一种方案能使2020年氮肥的产量更高?高多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2﹣2ax+3与x轴交于点A、B(A左B右),且AB=4,与y轴交于C点.
(1)求抛物线的解析式;
(2)如图,证明:对于任意给定的一点P(0,b)(b>3),存在过点P的一条直线交抛物线于M、N两点,使得PM=MN成立;
(3)将该抛物线在0≤x≤4间的部分记为图象G,将图象G在直线y=t上方的部分沿y=t翻折,其余部分保持不变,得到一个新的函数的图象,记这个函数的最大值为m,最小值为n,若m﹣n≤6,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.
(1)求抛物线的解析式;
(2)求出C、D两点的坐标
(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有3个不同的操作实验题目,物理题目用序号①、②、③表示,化学题目用字母a、b、c表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.
(1)小李同学抽到物理实验题目①这是一个 事件(填“必然”、“不可能”或“随机”).
(2)小张同学对物理的①、②和化学的c号实验准备得较好,请用画树形图(或列表)的方法,求他同时抽到两科都准备得较好的实验题目的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,…An,…,将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:
①抛物线的顶点M1,M2,M3,…Mn,…都在直线L:y=x上;
②抛物线依次经过点A1,A2,A3…An,….
则M2016顶点的坐标为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com