精英家教网 > 初中数学 > 题目详情

【题目】抛物线yax2+bx3a0)与直线ykx+ck0)相交于A(﹣10)、B2,﹣3)两点,且抛物线与y轴交于点C

1)求抛物线的解析式;

2)求出CD两点的坐标

3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.

【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(1+,﹣2).

【解析】

1)把A(﹣10)、B2,﹣3)两点坐标代入yax2+bx3可得抛物线解析式.

2)当x0时可求C点坐标,求出直线AB解析式,当x0可求D点坐标.

3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.

解:(1)把A(﹣10)、B2,﹣3)两点坐标代入

yax2+bx3可得

解得

yx22x3

2)把x0代入yx22x3中可得y=﹣3C0,﹣3

ykx+b,把A(﹣10)、B2,﹣3)两点坐标代入

解得

y=﹣x1

D0,﹣1

3)由C0,﹣3),D0,﹣1)可知CD的垂直平分线经过(0,﹣2

P点纵坐标为﹣2

x22x3=﹣2

解得:x,∵x0x1+

P1+,﹣2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一平面内,将两个全等的等腰直角三角形摆放在一起,为公共顶点,,若固定不动,绕点旋转,与边的交点分别为(点不与点重合,点不与点重合).

(1)求证:

(2)在旋转过程中,试判断等式是否始终成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.

1)已知原抛物线表达式是,求它的影子抛物线的表达式;

2)已知原抛物线经过点(10),且它的影子抛物线的表达式是,求原抛物线的表达式;

3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB4EF分别是边ABAD上的动点,AEDF,连接DECF交于点P,过点PPKBC,且PK2,若∠CBK的度数最大时,则BK长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是矩形ABCD的对角线的交点,E,F,G,H分别是OA,OB,OC,OD上的点,且AE=BF=CG=DH.

(1)求证:四边形EFGH是矩形;

(2)若E,F,G,H分别是OA,OB,OC,OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.

1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 

2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同时抛掷3枚硬币做游戏,其中1元硬币1枚,5角硬币两枚.

1)求3枚硬币同时正面朝上的概率.

2)小张、小王约定:正面朝上按面值算,背面朝上按0元算.3枚落地后,若面值和为1.5元,则小张获得1分;若面值和为1元,则小王得1分.谁先得到10分,谁获胜,请问这个游戏是否公平?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫和谐三角形,这条边叫和谐边,这条中线的长度叫和谐距离

1)已知A2,0),B0,4),C1,2),D4,1),这个点中,能与点O组成和谐三角形的点是 和谐距离

2)连接BD,点MNBD上任意两个动点(点MN不重合),点E是平面内任意一点,EMN是以MN和谐边和谐三角形,求点E的横坐标t的取值范围;

3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,OPQ和谐三角形,且和谐距离2,请描述出点Q所在位置.

查看答案和解析>>

同步练习册答案