精英家教网 > 初中数学 > 题目详情
在△ABC中,若AB=n2-1,AC=2n,BC=n2+1,则∠A=
90
90
度.
分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.
解答:解:∵(n2+1)2=n4+2n2+1,
(n2-1)2+(2n)2=n4+2n2+1,
∴BC2=AB2+AC2
∴△ABC是直角三角形,
∴∠A=90°,
故答案为90.
点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,若AB=30,AC=26,BC上的高为24,则此三角形的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在△ABC中,若AB=10,AC=16,AC边上的中线BD=6,则BC等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D是BC中点,连接AD并延长到点E,连接BE.
(1)若要使△ACD≌△EBD,应添上条件:
AC∥BE
AC∥BE

(2)证明上题;
(3)在△ABC中,若AB=5,AC=3,可以求得BC边上的中线AD的取值范围是AD<4.请看解题过程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,则AD<4.请参考上述解题方法,求AD>
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,若AB=AC,中线AD=
3
,cosB=
3
2
,则△ABC的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,点D是BC中点,连接AD并延长到点E,连接BE.
(1)若要使△ACD≌△EBD,应添上条件:
AD=DE
AD=DE

(2)证明:
(3)在△ABC中,若AB=5,AC=3,可以求得BC边上的中线AD的取值范围是AD<4.请看解题过程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=
12
AE
,则AD<4.请参考上述解题方法,求出AD>
1
1
.所以AD的取值范围是
1<AD<4
1<AD<4

查看答案和解析>>

同步练习册答案