精英家教网 > 初中数学 > 题目详情
如图,在四边形ABCD中,BA=BC,AC是∠DAE的平分线,AD∥EC,∠AEB=120°.求∠DAC的度数α的值.
考点:全等三角形的判定与性质,等腰三角形的判定与性质
专题:
分析:由已知AC是∠DAE的平分线可推出∠EAC=∠DAC,由DA∥CE可推出∠ECA=∠DAC,所以得到∠EAC=∠ECA,则AE=CE,又已知∠AEB=∠CEB,BE=BE,因此△AEB≌△CEB,问题得解.
解答: 解:∵AC是∠DAE的平分线,
∴∠DAC=∠CAE=α.
又∵DA∥EC,
∴∠DAC=∠ACE=α,
∴∠CAE=∠ACE=α,
∴AE=CE,∠AEC=180°-2α,
在△AEB和△CEB中,
AE=CE
AB=CB
EB=EB

∴△AEB≌△CEB(SSS),
∴∠AEB=∠CEB=120°,
∴∠AEC=360°-240°=120°,即180°-2α=120°.
解得 α=30°.
点评:此题考查的知识点是平行线的性质、全等三角形的判定和性质,解答此题的关键是由已知先证明∠EAC=∠ECA,AE=CE,再证明△AEB≌△CEB.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算:
(1)an+1•(an2÷a1-n
(2)(m+1)2-(2m+1)(2m-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=
1
2
x2-
3
2
x-2图象与x轴相交于A,B两点(点A在点B的左侧).若C(m,1-m)是抛物线上位于第四象限内的点,D是线段AB上的一个动点(不与A,B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.
(1)求点A和点B的坐标;
(2)求证:四边形DECF是矩形;
(3)连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

为了了解我市17000名七年级学生上学期期末数学考试的成绩情况,从中抽取了200名学生的成绩进行统计.在这个问题中,下列说法:(1)这17000名学生的数学考试成绩的全体是总体;(2)每个学生是个体;(3)200名学生是总体的一个样本;(4)样本容量是200,其中正确的有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,∠1=∠2,∠3=∠4,∠B=∠D,AF=CE,AB∥CD.
求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

下列计算不正确的是(  )
A、3
3
-
1
2
3
=
3
2
3
B、
9
2
=
3
2
2
C、(
3
-2)0=1
D、-13-8=-21

查看答案和解析>>

科目:初中数学 来源: 题型:

在平行四边形ABCD中,AC的垂直平分线分别交CD、AB于点F、E,AB=4,BC=
3
,AC=3
3
,求EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

用A、B两种规格的长方形纸板(如图1)无重合无缝隙的拼接可得如图2所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是(  )
A、10cm2
B、12cm2
C、14cm2
D、16cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110).根据图形,解答下列问题:
(1)如图3中,如果点N在平面内的位置极为N(6,30),那么ON=
 
,∠XON=
 

(2)如果点A、B在平面内的位置分别记为A(4,30),B(4,90),试求A、B两点间的距离.(画出图形并写出解题过程)
(3)在(2)中,若以AB为一边在平面内作等边三角形ABC,试用上述记法表示出另一个顶点C.

查看答案和解析>>

同步练习册答案