精英家教网 > 初中数学 > 题目详情
15.计算:a3•a-1=a2

分析 根据同底数幂的乘法,可得答案.

解答 解:原式=a3+(-1)
=a2
故答案为:a2

点评 本题考查了负整数指数幂,利用同底数幂的乘法计算是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=$\frac{4}{3}$x的图象交点为C(m,4).求:
(1)一次函数y=kx+b的解析式;
(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,直接写出点D的坐标;
(3)在x轴上求一点P使△POC为等腰三角形,请直接写出所有符合条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.我们可以计算出
①$\sqrt{{2}^{2}}$=2 $\sqrt{(3)^2}$=$\sqrt{{3}^{2}}$=3;
而且还可以计算出$\sqrt{(-2)^{2}}$=2 $\sqrt{(-3)^{2}}$=$\sqrt{(-3)^{2}}$=3
(1)根据计算的结果,可以得到:①当a>0时,$\sqrt{{a}^{2}}$=a;②当a<0时,$\sqrt{{a}^{2}}$=-a.
(2)应用所得的结论解决:如图,已知a,b在数轴上的位置,化简.
$\sqrt{{a}^{2}}$-$\sqrt{{b}^{2}}$-$\sqrt{(a+b)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.老师将作业写在黑板上时,只写了题干,没有写问题,她让学生自己写问题然后进行解答.芳芳写了三个问题,请你解答芳芳的问题.
老师给的题干:
已知O为直线AB上的一点,CD⊥AB于点O,PO⊥EO于点O,OM平分∠COE,F在OE的反向延长线上.
(1)当OP在∠BOC内、OE在∠BOD内时,如图1所示,试判断∠POM和∠COF之间的数量关系,并说明理由;
(2)当OP在∠AOC内、OE在∠BOC内时,如图2所示,试问(1)中∠POM和∠COF之间的数量关系是否发生变化,并说明理由;
(3)当OP在∠AOD内、OE在∠AOC内时,如图3所示,继续探究∠POM和∠COF之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:($\frac{m-2}{{m}^{2}+2m}-\frac{m-1}{{m}^{2}+4m+4}$)$÷\frac{m-4}{m+2}$,其中m=$\sqrt{2}$-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.在Rt△ABC中,∠C=90°,AC=3,BC=4,如果以点C为圆心,r为半径的圆与直线AC相切,那么r=$\frac{12}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.两个相似三角形对应中线的比2:3,周长的和是20,则两个三角形的周长分别为(  )
A.8和12B.9和11C.7和13D.6和14

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,则△BDC为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.半径为6cm,圆心角为120°的扇形的面积为12π.

查看答案和解析>>

同步练习册答案