如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,弦AB的长为9.6cm,则两圆的连心线O1O2的长为【 】
![]()
A.11cm
B.10cm C.9cm D
.8cm
科目:初中数学 来源: 题型:
如图,Rt△OAB的边OA在x
轴的正半轴上,OB在y轴的正半轴上,双曲线
过AB的中点C,已知点A的坐标为(
,0),点B的坐标
为(0,1),则该双曲线的表达式为【 】
![]()
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
某商家经销一种商品,用于装修门面已投资3000元。已知该商品每千克成本50元,在第一个月的试销时间内发现项,当销售单价为70元/ kg时,销售量为100 kg,销量w(kg)随销售单价x(元/ kg)的变化而变化,销售单价每提高5元/ kg,销售量减少10 kg。
设该商品的月销售利润为y(元)(销售利润=单价×
销售量-成本-投资)。
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求y与x之间的函数关系
式(不必写出自变量x的取值范围),并求出x为何值时,y的
值最大?
(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二
个月时里应该确定销售
单价为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有
A.1组 B.2组
C.3组 D.4组
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,AB为⊙O的直径,弦CD与AB相交于E,DE=EC,过点B的切线与AD的延长线交于F,过E作EG⊥BC于G,延长GE交AD于H.
![]()
![]()
(1)求证:AH=HD;
(2)若AE:AD=![]()
,DF=9,求⊙O的半径。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,将菱形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1,连结AD1、BC1.若∠ACB=30°,AB=2,CC1=x,△ACD与△A1C1D1重叠部分的面积为s,则下列结论:
①△A1AD1≌△CC1B;
②当四边形ABC1D1是矩形时,x=
;
③当x=2时,△BDD1为等腰直角三角形;
④
(0<x<
)。
其中正确的是 (填序号)。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P、Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为t(t >0)秒.
![]()
![]()
(1)求线段AC的长度;
(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;
(3)伴随着P、Q两点的运
动,线段PQ的垂直平分线为l:
①当l经过点A时,射线QP交AD于点E,求AE的长;
②当l经过点B时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com