分析 (1)先由22a+3-22a+1=96得a=2,再解方程组$\left\{\begin{array}{l}{2x-4y=14}\\{x-y=6}\end{array}\right.$,即可得出方程组的解;
(2)先根据方程组$\left\{\begin{array}{l}{x+y=16}\\{x-y=2a+2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=a+9}\\{y=-a+7}\end{array}\right.$,再代入2x-4y=-a2+6a+6,可得2(a+9)-4(-a+7)=-a2+6a+6,进而得出a的值;
(3)先把$\left\{\begin{array}{l}{2x-4y=-{a}^{2}+6a+6}\\{x-y=2a+2}\end{array}\right.$消去y,可得x=$\frac{1}{2}$a2+a+1,再进行配方,即可得出不论a取什么实数,x的值始终为正数.
解答 解:(1)由22a+3-22a+1=96得
22a+1(4-1)=96,
∴22a+1=32,
∴a=2,
当a=2时,方程组为$\left\{\begin{array}{l}{2x-4y=14}\\{x-y=6}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$;
(2)由题可得方程组$\left\{\begin{array}{l}{x+y=16}\\{x-y=2a+2}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=a+9}\\{y=-a+7}\end{array}\right.$,
把$\left\{\begin{array}{l}{x=a+9}\\{y=-a+7}\end{array}\right.$ 代入2x-4y=-a2+6a+6,可得
2(a+9)-4(-a+7)=-a2+6a+6,
解得a=±4;
(3)把$\left\{\begin{array}{l}{2x-4y=-{a}^{2}+6a+6}\\{x-y=2a+2}\end{array}\right.$消去y,可得
x=$\frac{1}{2}$a2+a+1,
由配方得x=$\frac{1}{2}$(a+1)2+$\frac{1}{2}$,
∵不论a取什么实数,$\frac{1}{2}$(a+1)2都为非负数,
∴不论a取什么实数,$\frac{1}{2}$(a+1)2+$\frac{1}{2}$都为正数.
点评 本题主要考查了二元一次方程组的解,以及解一元二次方程的方法,解决问题的关键是掌握二元一次方程组的解法.解题时注意配方的运用,任意一个实数的平方都是非负数.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$π-$\sqrt{3}$ | B. | 2π-2$\sqrt{3}$ | C. | $\frac{2}{3}$π-$\sqrt{3}$ | D. | $\frac{1}{3}$π |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com