精英家教网 > 初中数学 > 题目详情
如图,OA⊥OB,OC⊥OD,若∠AOC=135°,则∠BOD=
 
考点:余角和补角
专题:
分析:根据直角的定义得到∠AOB=∠COD=90°,则∠AOD=∠BOC=∠AOC-∠COD=135°-90°=45°,然后利用∠DOB=∠AOC-2∠AOD进行计算即可.
解答:解:∵OA⊥OB,OC⊥OD,
∴∠AOB和∠COD都是直角,
∴∠AOB=∠COD=90°,
∴∠AOD=∠BOC=∠AOC-∠BOA=135°-90°=45°,
∴∠DOB=∠AOC-2∠AOD=135°-90°=45°.
故答案为45°.
点评:本题考查了余角和补角,角度的计算:平角=180°,直角=90°.也考查了角的和与差的计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,小明在校运动会上掷铅球时,铅球的运动路线是抛物线y=-
1
5
(x+1)(x-7).铅球落在A点处,则OA长=
 
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠1与∠B是直线
 
 
被直线
 
截成的同位角;∠2与∠A是直线
 
 
被直线
 
截成的同位角.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.
(1)哪两个图形成中心对称?
(2)已知△ADC的面积为4,求△ABE的面积;
(3)已知AB=5,AC=3,求AD的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O为直线AB上一点,OC平分∠BOD,EO⊥OC,垂足为点O,试判断∠3与∠4的关系.
解:∵∠AOD+∠BOD=
 
 

∴∠1+∠2+
 
+
 
=180°.
 
 
 

∴∠EOC=
 
+
 
=90°(
 

∴∠4+∠1=
 

又OC平分∠BOD(
 

∴∠1=∠2(
 

∴∠3=∠4(
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若关于x的分式方程
a-1
x-3
=1的实数范围内无解,则实数a的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

若直线y=-x+a和直线y=x+b的交点坐标为(n,3),则a+b=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

等腰三角形一边长为1cm,另一边长为2cm,它的周长是
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

学校对七年级女生进行了仰卧起坐的测试,以能做50个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名女生的成绩如下:
2-103-2-410
(1)这8名女生的成绩分别是多少?
(2)她们平均做了多少个仰卧起坐?

查看答案和解析>>

同步练习册答案