【题目】如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.
(1)求梯子底端B外移距离BD的长度;
(2)猜想CE与BE的大小关系,并证明你的结论.
【答案】(1)BD=1m;(2)CE与BE的大小关系是CE=BE,证明见解析.
【解析】
(1)利用勾股定理求出OB,求出OC,再根据勾股定理求出OD,即可求出答案;
(2)求出△AOB和△DOC全等,根据全等三角形的性质得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根据等腰三角形的判定得出即可.
(1)∵AO⊥OD,AO=4m,AB=5m,
∴OB==3m,
∵梯子的顶端A沿墙下滑1m至C点,
∴OC=AO﹣AC=3m,
∵CD=AB=5m,
∴由勾股定理得:OD=4m,
∴BD=OD﹣OB=4m﹣3m=1m;
(2)CE与BE的大小关系是CE=BE,证明如下:
连接CB,由(1)知:AO=DO=4m,AB=CD=5m,
∵∠AOB=∠DOC=90°,
在Rt△AOB和Rt△DOC中
,
∴Rt△AOB≌Rt△DOC(HL),
∴∠ABO=∠DCO,OC=OB,
∴∠OCB=∠OBC,
∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,
∴∠EBC=∠ECB,
∴CE=BE.
科目:初中数学 来源: 题型:
【题目】如图①, 是的边上的高,且cm,cm,点从点出发,沿线段向终点运动,其速度与时间的关系如图②所示,设点的运动时间为(s),的面积为(cm2 ).
(1)在点沿向点运动的过程中,它的速度是 cm/s,用含的代数式表示线段的长是 cm,变量与之间的函数表达式为;
(2)当时,求的值.当每增加1时,求的变化情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列四个结论:①b<0;②c>0;③b2﹣4ac>0;④a﹣b+c<0,其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过点A1(1,0)作x轴的垂线与直线l:y= x相交于点B1 , 以O为圆心,OB1为半径画弧与x轴相交于点A2;经过点A2作x轴的垂线与直线l相交于点B2 , 以O为圆心、OB2为半径画弧与x轴相交于点A3;…依此类推,点A5的坐标是( )
A.(8,0)
B.(12,0)
C.(16,0)
D.(32,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com