精英家教网 > 初中数学 > 题目详情

【题目】如图有两个边长为4cm的正方形,其中一个正方形的顶点在另一个正方形的中心上,绕着中心旋转其中一个正方形,那么图中阴影部分的面积是(  )

A. 无法确定B. 8cm2C. 16cm2D. 4cm2

【答案】D

【解析】

如图,根据正方形的性质得ODOC,∠ODA=∠OCD45°,∠DOC90°,再利用等角的余角相等得到∠DOE=∠COF,于是可根据“ASA”证明△ODE≌△OCF

SODESOCF,所以S四边形EOFDSDOCS正方形ABCD

解:如图,

∵四边形ABCD为正方形,

ODOC,∠ODA=∠OCD45°,∠DOC90°,

而∠POM90°,

即∠DOF+COF90°,∠DOE+DOF90°,

∴∠DOE=∠COF

在△ODE和△OCF中,

∴△ODE≌△OCFASA),

SODESOCF

S四边形EOFDSDOCS正方形ABCD×424cm2).

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,AB=AC=4cm,B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映yx之间函数关系的图象是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A﹣10)、C03),与x轴交于另一点B,抛物线的顶点为D

1)求此二次函数解析式;

2)连接DCBCDB,求证:△BCD是直角三角形;

3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知抛物线yax2a0)与一次函数ykx+b的图象相交于A(﹣1,﹣1),B2,﹣4)两点,点P是抛物线上不与AB重合的一个动点,点Qy轴上的一个动点.

1)请直接写出akb的值及关于x的不等式ax2kx2的解集;

2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;

3)是否存在以PQAB为顶点的四边形是平行四边形?若存在,请直接写出PQ的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图 1,在ABC 中,ACB90°BCAC,点 D AB 上,DEAB BC E,点 F AE 的中点

1 写出线段 FD 与线段 FC 的关系并证明;

2 如图 2,将BDE 绕点 B 逆时针旋转αα90°),其它条件不变,线段 FD 与线段 FC 的关系是否变化,写出你的结论并证明;

3 BDE 绕点 B 逆时针旋转一周,如果 BC4BE2,直接写出线段 BF 的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙OAB⊙O的直径,∠ACB的平分线交⊙OD,连接ADBD,过点DDPABCA的延长线于P

1)求证:PD⊙O的切线;

2)当AC6BC8时,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.

(1)求∠BAC的度数;

(2)当点DAB上方,且CDBP时,求证:PC=AC;

(3)在点P的运动过程中

①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;

②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y轴交于点C0,2),它的顶点为D1,m),且.

1)求m的值及抛物线的表达式;

2)将此抛物线向上平移后与x轴正半轴交于点A,与y轴交于点B,且OA=OB.若点A是由原抛物线上的点E平移所得,求点E的坐标;

(3)在(2)的条件下,点P是抛物线对称轴上的一点(位于x轴上方),且APB=45°.求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图①,②,在矩形ABCD中,AB=4BC=8PQ分别是边BCCD上的点.

(1)如图①,若APPQBP=2,求CQ的长;

(2)如图②,若=2,且EFG分别为APPQPC的中点,求四边形EPGF的面积.

查看答案和解析>>

同步练习册答案